These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 15588392)

  • 1. Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography.
    Dhariwala B; Hunt E; Boland T
    Tissue Eng; 2004; 10(9-10):1316-22. PubMed ID: 15588392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds.
    Arcaute K; Mann B; Wicker R
    Acta Biomater; 2010 Mar; 6(3):1047-54. PubMed ID: 19683602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems.
    Hutmacher DW; Sittinger M; Risbud MV
    Trends Biotechnol; 2004 Jul; 22(7):354-62. PubMed ID: 15245908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(ethylene glycol) hydrogel system supports preadipocyte viability, adhesion, and proliferation.
    Patel PN; Gobin AS; West JL; Patrick CW
    Tissue Eng; 2005; 11(9-10):1498-505. PubMed ID: 16259604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Off-the-Shelf Multilumen Poly(Ethylene Glycol) Nerve Guidance Conduits Using Stereolithography.
    Arcaute K; Mann BK; Wicker RB
    Tissue Eng Part C Methods; 2011 Jan; 17(1):27-38. PubMed ID: 20673135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An in situ forming collagen-PEG hydrogel for tissue regeneration.
    Sargeant TD; Desai AP; Banerjee S; Agawu A; Stopek JB
    Acta Biomater; 2012 Jan; 8(1):124-32. PubMed ID: 21911086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of tough poly(ethylene glycol)/collagen double network hydrogels for tissue engineering.
    Chen JX; Yuan J; Wu YL; Wang P; Zhao P; Lv GZ; Chen JH
    J Biomed Mater Res A; 2018 Jan; 106(1):192-200. PubMed ID: 28884502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multilayer microfluidic PEGDA hydrogels.
    Cuchiara MP; Allen AC; Chen TM; Miller JS; West JL
    Biomaterials; 2010 Jul; 31(21):5491-7. PubMed ID: 20447685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of well-defined PLGA scaffolds using novel microembossing and carbon dioxide bonding.
    Yang Y; Basu S; Tomasko DL; Lee LJ; Yang ST
    Biomaterials; 2005 May; 26(15):2585-94. PubMed ID: 15585261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional pattering of poly (ethylene Glycol) hydrogels through surface-initiated photopolymerization.
    Papavasiliou G; Songprawat P; Pérez-Luna V; Hammes E; Morris M; Chiu YC; Brey E
    Tissue Eng Part C Methods; 2008 Jun; 14(2):129-40. PubMed ID: 18471086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro degradation behavior of photopolymerized PEG hydrogels as tissue engineering scaffold.
    Xin AX; Gaydos C; Mao JJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2091-3. PubMed ID: 17946494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of scaffolds and culture conditions for tissue engineering of the knee meniscus.
    Aufderheide AC; Athanasiou KA
    Tissue Eng; 2005; 11(7-8):1095-104. PubMed ID: 16144445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation.
    Chan V; Zorlutuna P; Jeong JH; Kong H; Bashir R
    Lab Chip; 2010 Aug; 10(16):2062-70. PubMed ID: 20603661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures.
    Almany L; Seliktar D
    Biomaterials; 2005 May; 26(15):2467-77. PubMed ID: 15585249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization.
    Kufelt O; El-Tamer A; Sehring C; Meißner M; Schlie-Wolter S; Chichkov BN
    Acta Biomater; 2015 May; 18():186-95. PubMed ID: 25749294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foamed oligo(poly(ethylene glycol)fumarate) hydrogels as versatile prefabricated scaffolds for tissue engineering.
    Henke M; Baumer J; Blunk T; Tessmar J
    J Tissue Eng Regen Med; 2014 Mar; 8(3):248-52. PubMed ID: 22718564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds.
    Chan BK; Wippich CC; Wu CJ; Sivasankar PM; Schmidt G
    Macromol Biosci; 2012 Nov; 12(11):1490-501. PubMed ID: 23070957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Keratocyte behavior in three-dimensional photopolymerizable poly(ethylene glycol) hydrogels.
    Garagorri N; Fermanian S; Thibault R; Ambrose WM; Schein OD; Chakravarti S; Elisseeff J
    Acta Biomater; 2008 Sep; 4(5):1139-1147. PubMed ID: 18567550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of macroporous poly(ethylene glycol)-based hydrogels for tissue engineering application.
    Sannino A; Netti PA; Madaghiele M; Coccoli V; Luciani A; Maffezzoli A; Nicolais L
    J Biomed Mater Res A; 2006 Nov; 79(2):229-36. PubMed ID: 16752396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micropatterning of poly(ethylene glycol) diacrylate hydrogels.
    Ali S; Cuchiara ML; West JL
    Methods Cell Biol; 2014; 121():105-19. PubMed ID: 24560506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.