BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 15588409)

  • 1. Modulation of angiogenic potential of collagen matrices by covalent incorporation of heparin and loading with vascular endothelial growth factor.
    Steffens GC; Yao C; Prével P; Markowicz M; Schenck P; Noah EM; Pallua N
    Tissue Eng; 2004; 10(9-10):1502-9. PubMed ID: 15588409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue substitutes with improved angiogenic capabilities: an in vitro investigation with endothelial cells and endothelial progenitor cells.
    Grieb G; Groger A; Piatkowski A; Markowicz M; Steffens GC; Pallua N
    Cells Tissues Organs; 2010; 191(2):96-104. PubMed ID: 19641290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of cross-linking of collagen matrices on their angiogenic capability.
    Yao C; Markowicz M; Pallua N; Noah EM; Steffens G
    Biomaterials; 2008 Jan; 29(1):66-74. PubMed ID: 17935778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of modified collagen matrices on human umbilical vein endothelial cells.
    Markowicz M; Heitland A; Steffens GC; Pallua N
    Int J Artif Organs; 2005 Dec; 28(12):1251-8. PubMed ID: 16404702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing angiogenesis in collagen matrices by covalent incorporation of VEGF.
    Koch S; Yao Ch; Grieb G; Prével P; Noah EM; Steffens GC
    J Mater Sci Mater Med; 2006 Aug; 17(8):735-41. PubMed ID: 16897166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of proteinase-induced matrix degradation on the release of VEGF from heparinized collagen matrices.
    Yao C; Roderfeld M; Rath T; Roeb E; Bernhagen J; Steffens G
    Biomaterials; 2006 Mar; 27(8):1608-16. PubMed ID: 16183114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering strategies to control vascular endothelial growth factor stability and levels in a collagen matrix for angiogenesis: the role of heparin sodium salt and the PLGA-based microsphere approach.
    d'Angelo I; Oliviero O; Ungaro F; Quaglia F; Netti PA
    Acta Biomater; 2013 Jul; 9(7):7389-98. PubMed ID: 23523534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of collagen matrices for enhancing angiogenesis.
    Yao C; Prével P; Koch S; Schenck P; Noah EM; Pallua N; Steffens G
    Cells Tissues Organs; 2004; 178(4):189-96. PubMed ID: 15812146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual independent delivery of pro-angiogenic growth factors from starPEG-heparin hydrogels.
    Zieris A; Chwalek K; Prokoph S; Levental KR; Welzel PB; Freudenberg U; Werner C
    J Control Release; 2011 Nov; 156(1):28-36. PubMed ID: 21763368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of modified extracellular matrices on TI6AL4V implants on binding and release of VEGF.
    Wolf-Brandstetter C; Lode A; Hanke T; Scharnweber D; Worch H
    J Biomed Mater Res A; 2006 Dec; 79(4):882-94. PubMed ID: 16941591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF.
    Nillesen ST; Geutjes PJ; Wismans R; Schalkwijk J; Daamen WF; van Kuppevelt TH
    Biomaterials; 2007 Feb; 28(6):1123-31. PubMed ID: 17113636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of heparinized decellularized scaffolds on angiogenic capability.
    Wu Q; Li Y; Wang Y; Li L; Jiang X; Tang J; Yang H; Zhang J; Bao J; Bu H
    J Biomed Mater Res A; 2016 Dec; 104(12):3021-3030. PubMed ID: 27459086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of angiogenic potential of tissue-engineered peripheral nerve by covalent incorporation of heparin and loading with vascular endothelial growth factor.
    Zhao B; Zhao Z; Ma J; Ma X
    Neurosci Lett; 2019 Jul; 705():259-264. PubMed ID: 30639395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibroblast-derived matrix (FDM) as a novel vascular endothelial growth factor delivery platform.
    Du P; Hwang MP; Noh YK; Subbiah R; Kim IG; Bae SE; Park K
    J Control Release; 2014 Nov; 194():122-9. PubMed ID: 25194780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nerve growth factor (NGF) promotes angiogenesis in the quail chorioallantoic membrane.
    Lazarovici P; Gazit A; Staniszewska I; Marcinkiewicz C; Lelkes PI
    Endothelium; 2006; 13(1):51-9. PubMed ID: 16885067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactivation of collagen matrices through sustained VEGF release from PLGA microspheres.
    Borselli C; Ungaro F; Oliviero O; d'Angelo I; Quaglia F; La Rotonda MI; Netti PA
    J Biomed Mater Res A; 2010 Jan; 92(1):94-102. PubMed ID: 19165799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased angiogenesis in acellular scaffolds by combined release of FGF2 and VEGF.
    Nillesen ST; Geutjes PJ; Wismans R; Schalkwijk J; Daamen WF; van Kuppevelt TH
    J Control Release; 2006 Nov; 116(2):e88-90. PubMed ID: 17718989
    [No Abstract]   [Full Text] [Related]  

  • 18. Loading of VEGF to the heparin cross-linked demineralized bone matrix improves vascularization of the scaffold.
    Chen L; He Z; Chen B; Yang M; Zhao Y; Sun W; Xiao Z; Zhang J; Dai J
    J Mater Sci Mater Med; 2010 Jan; 21(1):309-17. PubMed ID: 19634004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled release of chitosan/heparin nanoparticle-delivered VEGF enhances regeneration of decellularized tissue-engineered scaffolds.
    Tan Q; Tang H; Hu J; Hu Y; Zhou X; Tao Y; Wu Z
    Int J Nanomedicine; 2011; 6():929-42. PubMed ID: 21720505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining conditions for covalent immobilization of angiogenic growth factors onto scaffolds for tissue engineering.
    Chiu LL; Weisel RD; Li RK; Radisic M
    J Tissue Eng Regen Med; 2011 Jan; 5(1):69-84. PubMed ID: 20717888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.