These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
372 related articles for article (PubMed ID: 15588826)
1. A metallo-beta-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem. Garau G; Bebrone C; Anne C; Galleni M; Frère JM; Dideberg O J Mol Biol; 2005 Jan; 345(4):785-95. PubMed ID: 15588826 [TBL] [Abstract][Full Text] [Related]
2. Common mechanistic features among metallo-beta-lactamases: a computational study of Aeromonas hydrophila CphA enzyme. Simona F; Magistrato A; Dal Peraro M; Cavalli A; Vila AJ; Carloni P J Biol Chem; 2009 Oct; 284(41):28164-28171. PubMed ID: 19671702 [TBL] [Abstract][Full Text] [Related]
3. Mutational analysis of the zinc- and substrate-binding sites in the CphA metallo-beta-lactamase from Aeromonas hydrophila. Bebrone C; Anne C; Kerff F; Garau G; De Vriendt K; Lantin R; Devreese B; Van Beeumen J; Dideberg O; Frère JM; Galleni M Biochem J; 2008 Aug; 414(1):151-9. PubMed ID: 18498253 [TBL] [Abstract][Full Text] [Related]
4. The structure of the dizinc subclass B2 metallo-beta-lactamase CphA reveals that the second inhibitory zinc ion binds in the histidine site. Bebrone C; Delbrück H; Kupper MB; Schlömer P; Willmann C; Frère JM; Fischer R; Galleni M; Hoffmann KM Antimicrob Agents Chemother; 2009 Oct; 53(10):4464-71. PubMed ID: 19651913 [TBL] [Abstract][Full Text] [Related]
5. Biapenem inactivation by B2 metallo β-lactamases: energy landscape of the post-hydrolysis reactions. Gatti DL PLoS One; 2012; 7(1):e30079. PubMed ID: 22272276 [TBL] [Abstract][Full Text] [Related]
6. Protonation state and substrate binding to B2 metallo-beta-lactamase CphA from Aeromonas hydrofila. Simona F; Magistrato A; Vera DM; Garau G; Vila AJ; Carloni P Proteins; 2007 Nov; 69(3):595-605. PubMed ID: 17623844 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of Serratia fonticola Sfh-I: activation of the nucleophile in mono-zinc metallo-β-lactamases. Fonseca F; Bromley EH; Saavedra MJ; Correia A; Spencer J J Mol Biol; 2011 Sep; 411(5):951-9. PubMed ID: 21762699 [TBL] [Abstract][Full Text] [Related]
8. Recognition and interaction of CphA from Aeromonas hydrophila with imipenem and biapenem by spectroscopic analysis in combination with molecular docking. Zhang Y; Bian L J Mol Recognit; 2019 Aug; 32(8):e2781. PubMed ID: 31050067 [TBL] [Abstract][Full Text] [Related]
9. Catalytic mechanism of class B2 metallo-beta-lactamase. Xu D; Xie D; Guo H J Biol Chem; 2006 Mar; 281(13):8740-7. PubMed ID: 16423823 [TBL] [Abstract][Full Text] [Related]
10. Dramatic broadening of the substrate profile of the Aeromonas hydrophila CphA metallo-beta-lactamase by site-directed mutagenesis. Bebrone C; Anne C; De Vriendt K; Devreese B; Rossolini GM; Van Beeumen J; Frère JM; Galleni M J Biol Chem; 2005 Aug; 280(31):28195-202. PubMed ID: 15863831 [TBL] [Abstract][Full Text] [Related]
11. High specificity of cphA-encoded metallo-beta-lactamase from Aeromonas hydrophila AE036 for carbapenems and its contribution to beta-lactam resistance. Segatore B; Massidda O; Satta G; Setacci D; Amicosante G Antimicrob Agents Chemother; 1993 Jun; 37(6):1324-8. PubMed ID: 8328781 [TBL] [Abstract][Full Text] [Related]
12. Deep Sequencing of Random Mutant Libraries Reveals the Active Site of the Narrow Specificity CphA Metallo-β-Lactamase is Fragile to Mutations. Sun Z; Mehta SC; Adamski CJ; Gibbs RA; Palzkill T Sci Rep; 2016 Sep; 6():33195. PubMed ID: 27616327 [TBL] [Abstract][Full Text] [Related]
13. Antibiotic binding to monozinc CphA beta-lactamase from Aeromonas hydropila: quantum mechanical/molecular mechanical and density functional theory studies. Xu D; Zhou Y; Xie D; Guo H J Med Chem; 2005 Oct; 48(21):6679-89. PubMed ID: 16220984 [TBL] [Abstract][Full Text] [Related]
14. Competitive inhibitors of the CphA metallo-beta-lactamase from Aeromonas hydrophila. Horsfall LE; Garau G; Liénard BM; Dideberg O; Schofield CJ; Frère JM; Galleni M Antimicrob Agents Chemother; 2007 Jun; 51(6):2136-42. PubMed ID: 17307979 [TBL] [Abstract][Full Text] [Related]
15. Biapenem inactivation by B2 metallo β-lactamases: energy landscape of the hydrolysis reaction. Ackerman SH; Gatti DL PLoS One; 2013; 8(1):e55136. PubMed ID: 23372827 [TBL] [Abstract][Full Text] [Related]
16. Theoretical studies of the hydrolysis of antibiotics catalyzed by a metallo-β-lactamase. Meliá C; Ferrer S; Moliner V; Bertran J Arch Biochem Biophys; 2015 Sep; 582():116-26. PubMed ID: 25622886 [TBL] [Abstract][Full Text] [Related]
17. Role of Cys221 and Asn116 in the zinc-binding sites of the Aeromonas hydrophila metallo-beta-lactamase. Vanhove M; Zakhem M; Devreese B; Franceschini N; Anne C; Bebrone C; Amicosante G; Rossolini GM; Van Beeumen J; Frère JM; Galleni M Cell Mol Life Sci; 2003 Nov; 60(11):2501-9. PubMed ID: 14625692 [TBL] [Abstract][Full Text] [Related]
18. Identification of New Natural CphA Metallo-β-Lactamases CphA4 and CphA5 in Aeromonas veronii and Aeromonas hydrophila Isolates from Municipal Sewage in Central Italy. Bottoni C; Marcoccia F; Compagnoni C; Colapietro M; Sabatini A; Celenza G; Segatore B; Maturo MG; Amicosante G; Perilli M Antimicrob Agents Chemother; 2015 Aug; 59(8):4990-3. PubMed ID: 25987617 [TBL] [Abstract][Full Text] [Related]
19. QM/MM studies of monozinc β-lactamase CphA suggest that the crystal structure of an enzyme-intermediate complex represents a minor pathway. Wu S; Xu D; Guo H J Am Chem Soc; 2010 Dec; 132(51):17986-8. PubMed ID: 21138257 [TBL] [Abstract][Full Text] [Related]