BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 15588896)

  • 1. The production of protein-loaded microparticles by supercritical fluid enhanced mixing and spraying.
    Whitaker MJ; Hao J; Davies OR; Serhatkulu G; Stolnik-Trenkic S; Howdle SM; Shakesheff KM
    J Control Release; 2005 Jan; 101(1-3):85-92. PubMed ID: 15588896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasticization and spraying of poly (DL-lactic acid) using supercritical carbon dioxide: control of particle size.
    Hao J; Whitaker MJ; Wong B; Serhatkulu G; Shakesheff KM; Howdle SM
    J Pharm Sci; 2004 Apr; 93(4):1083-90. PubMed ID: 14999744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encapsulation of lysozyme in a biodegradable polymer by precipitation with a vapor-over-liquid antisolvent.
    Young TJ; Johnston KP; Mishima K; Tanaka H
    J Pharm Sci; 1999 Jun; 88(6):640-50. PubMed ID: 10350502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release.
    Thote AJ; Gupta RB
    Nanomedicine; 2005 Mar; 1(1):85-90. PubMed ID: 17292062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle characteristics and lung deposition patterns in a human airway replica of a dry powder formulation of polylactic acid produced using supercritical fluid technology.
    Cheng YS; Yazzie D; Gao J; Muggli D; Etter J; Rosenthal GJ
    J Aerosol Med; 2003; 16(1):65-73. PubMed ID: 12737686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of azacytidine/poly(L-lactic) acid particles prepared by supercritical antisolvent precipitation.
    Argemí A; Vega A; Subra-Paternault P; Saurina J
    J Pharm Biomed Anal; 2009 Dec; 50(5):847-52. PubMed ID: 19660889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size controlled production of biodegradable microparticles with supercritical gases.
    Thies J; Müller BW
    Eur J Pharm Biopharm; 1998 Jan; 45(1):67-74. PubMed ID: 9689537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of micro-particles of proteins for aerosol delivery using high pressure modified carbon dioxide.
    Bustami RT; Chan HK; Dehghani F; Foster NR
    Pharm Res; 2000 Nov; 17(11):1360-6. PubMed ID: 11205728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of pH- and time-dependent oral microparticles to optimize budesonide delivery to ileum and colon.
    Krishnamachari Y; Madan P; Lin S
    Int J Pharm; 2007 Jun; 338(1-2):238-47. PubMed ID: 17368982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Biodegradable polymer microparticles with entraped herbal extracts: preparation with supercritical carbon dioxide and use for tissue repair].
    Markvicheva EA; Antonov EN; Popova AV; Bogorodskiĭ SE; Likhareva VV; Fel'dman BM; Strukova SM; Popov VK; Rumsh LD
    Biomed Khim; 2009; 55(4):479-88. PubMed ID: 20000125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling protein release from scaffolds using polymer blends and composites.
    Ginty PJ; Barry JJ; White LJ; Howdle SM; Shakesheff KM
    Eur J Pharm Biopharm; 2008 Jan; 68(1):82-9. PubMed ID: 17884400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of insulin during the erosion of poly(lactic acid) and poly(lactic-co-glycolic acid) microspheres.
    Ibrahim MA; Ismail A; Fetouh MI; Göpferich A
    J Control Release; 2005 Sep; 106(3):241-52. PubMed ID: 15970349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of drug loaded microparticles by the use of supercritical gases with the aerosol solvent extraction system (ASES) process.
    Bleich J; Müller BW
    J Microencapsul; 1996; 13(2):131-9. PubMed ID: 8999119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sub-micrometer-sized biodegradable particles of poly(L-lactic acid) via the gas antisolvent spray precipitation process.
    Randolph TW; Randolph AD; Mebes M; Yeung S
    Biotechnol Prog; 1993; 9(4):429-35. PubMed ID: 7763910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of bioerodible polymeric microspheres and microparticles by rapid expansion of supercritical solutions.
    Tom JW; Debenedetti PG
    Biotechnol Prog; 1991; 7(5):403-11. PubMed ID: 1369363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PLA-microparticles formulated by means a thermoreversible gel able to modify protein encapsulation and release without being co-encapsulated.
    Leo E; Ruozi B; Tosi G; Vandelli MA
    Int J Pharm; 2006 Oct; 323(1-2):131-8. PubMed ID: 16815657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and physicochemical characterization of supercritically dried insulin-loaded microparticles for pulmonary delivery.
    Amidi M; Pellikaan HC; de Boer AH; Crommelin DJ; Hennink WE; Jiskoot W
    Eur J Pharm Biopharm; 2008 Feb; 68(2):191-200. PubMed ID: 17576056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supercritical fluid assisted atomization introduced by an enhanced mixer for micronization of lysozyme: Particle morphology, size and protein stability.
    Du Z; Guan YX; Yao SJ; Zhu ZQ
    Int J Pharm; 2011 Dec; 421(2):258-68. PubMed ID: 22001535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suitability of polymer materials for production of pulmonary microparticles using a PGSS supercritical fluid technique: preparation of microparticles using PEG, fatty acids and physical or chemicals blends of PEG and fatty acids.
    Vijayaraghavan M; Stolnik S; Howdle SM; Illum L
    Int J Pharm; 2013 Jan; 441(1-2):580-8. PubMed ID: 23178217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of solid lipid submicron particles for protein delivery using a novel supercritical gas-assisted melting atomization process.
    Salmaso S; Elvassore N; Bertucco A; Caliceti P
    J Pharm Sci; 2009 Feb; 98(2):640-50. PubMed ID: 18484622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.