These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 15588899)
1. Growth factor-loaded scaffolds for bone engineering. Jansen JA; Vehof JW; Ruhé PQ; Kroeze-Deutman H; Kuboki Y; Takita H; Hedberg EL; Mikos AG J Control Release; 2005 Jan; 101(1-3):127-36. PubMed ID: 15588899 [TBL] [Abstract][Full Text] [Related]
2. Bone formation in transforming growth factor beta-I-loaded titanium fiber mesh implants. Vehof JW; Haus MT; de Ruijter AE; Spauwen PH; Jansen JA Clin Oral Implants Res; 2002 Feb; 13(1):94-102. PubMed ID: 12005151 [TBL] [Abstract][Full Text] [Related]
3. Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants inserted at an ectopic site in rabbits. Kroese-Deutman HC; Ruhé PQ; Spauwen PH; Jansen JA Biomaterials; 2005 Apr; 26(10):1131-8. PubMed ID: 15451632 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold. Jeon O; Song SJ; Kang SW; Putnam AJ; Kim BS Biomaterials; 2007 Jun; 28(17):2763-71. PubMed ID: 17350678 [TBL] [Abstract][Full Text] [Related]
5. Ectopic osteoinduction and early degradation of recombinant human bone morphogenetic protein-2-loaded porous beta-tricalcium phosphate in mice. Liang G; Yang Y; Oh S; Ong JL; Zheng C; Ran J; Yin G; Zhou D Biomaterials; 2005 Jul; 26(20):4265-71. PubMed ID: 15683650 [TBL] [Abstract][Full Text] [Related]
6. The use of porous calcium phosphate scaffolds with transforming growth factor beta 1 as an onlay bone graft substitute. Huse RO; Quinten Ruhe P; Wolke JG; Jansen JA Clin Oral Implants Res; 2004 Dec; 15(6):741-9. PubMed ID: 15533136 [TBL] [Abstract][Full Text] [Related]
7. Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits. Ruhé PQ; Kroese-Deutman HC; Wolke JG; Spauwen PH; Jansen JA Biomaterials; 2004 May; 25(11):2123-32. PubMed ID: 14741627 [TBL] [Abstract][Full Text] [Related]
8. Targeted delivery system for juxtacrine signaling growth factor based on rhBMP-2-mediated carrier-protein conjugation. Liu HW; Chen CH; Tsai CL; Hsiue GH Bone; 2006 Oct; 39(4):825-36. PubMed ID: 16782421 [TBL] [Abstract][Full Text] [Related]
9. Bone formation at rhBMP-2-coated titanium implants in the rat ectopic model. Hall J; Sorensen RG; Wozney JM; Wikesjö UM J Clin Periodontol; 2007 May; 34(5):444-51. PubMed ID: 17448048 [TBL] [Abstract][Full Text] [Related]
10. Bone engineering of the rabbit ulna. El-Ghannam A; Cunningham L; Pienkowski D; Hart A J Oral Maxillofac Surg; 2007 Aug; 65(8):1495-502. PubMed ID: 17656274 [TBL] [Abstract][Full Text] [Related]
11. Segmental bone regeneration using an rhBMP-2-loaded gelatin/nanohydroxyapatite/fibrin scaffold in a rabbit model. Liu Y; Lu Y; Tian X; Cui G; Zhao Y; Yang Q; Yu S; Xing G; Zhang B Biomaterials; 2009 Oct; 30(31):6276-85. PubMed ID: 19683811 [TBL] [Abstract][Full Text] [Related]
12. Controlled release of rhBMP-2 loaded poly(dl-lactic-co-glycolic acid)/calcium phosphate cement composites in vivo. Ruhé PQ; Boerman OC; Russel FG; Spauwen PH; Mikos AG; Jansen JA J Control Release; 2005 Aug; 106(1-2):162-71. PubMed ID: 15972241 [TBL] [Abstract][Full Text] [Related]
13. Bone formation in CaP-coated and noncoated titanium fiber mesh. Vehof JW; van den Dolder J; de Ruijter JE; Spauwen PH; Jansen JA J Biomed Mater Res A; 2003 Mar; 64(3):417-26. PubMed ID: 12579555 [TBL] [Abstract][Full Text] [Related]
14. The effects of rhBMP-2 released from biodegradable polyurethane/microsphere composite scaffolds on new bone formation in rat femora. Li B; Yoshii T; Hafeman AE; Nyman JS; Wenke JC; Guelcher SA Biomaterials; 2009 Dec; 30(35):6768-79. PubMed ID: 19762079 [TBL] [Abstract][Full Text] [Related]
16. Ectopic bone formation associated with recombinant human bone morphogenetic proteins-2 using absorbable collagen sponge and beta tricalcium phosphate as carriers. Kim CS; Kim JI; Kim J; Choi SH; Chai JK; Kim CK; Cho KS Biomaterials; 2005 May; 26(15):2501-7. PubMed ID: 15585252 [TBL] [Abstract][Full Text] [Related]
17. Histological characterization of the early stages of bone morphogenetic protein-induced osteogenesis. Vehof JW; Takita H; Kuboki Y; Spauwen PH; Jansen JA J Biomed Mater Res; 2002 Sep; 61(3):440-9. PubMed ID: 12115469 [TBL] [Abstract][Full Text] [Related]
18. Bone regenerative properties of injectable PGLA-CaP composite with TGF-beta1 in a rat augmentation model. Plachokova A; Link D; van den Dolder J; van den Beucken J; Jansen J J Tissue Eng Regen Med; 2007; 1(6):457-64. PubMed ID: 18265419 [TBL] [Abstract][Full Text] [Related]
19. Cyclosilicate nanocomposite: a novel resorbable bioactive tissue engineering scaffold for BMP and bone-marrow cell delivery. El-Ghannam A; Ning CQ; Mehta J J Biomed Mater Res A; 2004 Dec; 71(3):377-90. PubMed ID: 15470721 [TBL] [Abstract][Full Text] [Related]
20. Growth of new bone guided by implants in a murine calvarial model. Freilich M; M Patel C; Wei M; Shafer D; Schleier P; Hortschansky P; Kompali R; Kuhn L Bone; 2008 Oct; 43(4):781-8. PubMed ID: 18589010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]