BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

975 related articles for article (PubMed ID: 15589184)

  • 1. Brain-computer interface (BCI) operation: signal and noise during early training sessions.
    McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR
    Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensorimotor rhythm-based brain-computer interface (BCI): feature selection by regression improves performance.
    McFarland DJ; Wolpaw JR
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):372-9. PubMed ID: 16200760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of EEG activity into cursor movement by a brain-computer interface (BCI).
    Fabiani GE; McFarland DJ; Wolpaw JR; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):331-8. PubMed ID: 15473195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.
    Huang D; Lin P; Fei DY; Chen X; Bai O
    J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface.
    Neuper C; Scherer R; Wriessnegger S; Pfurtscheller G
    Clin Neurophysiol; 2009 Feb; 120(2):239-47. PubMed ID: 19121977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-computer interface (BCI) operation: optimizing information transfer rates.
    McFarland DJ; Sarnacki WA; Wolpaw JR
    Biol Psychol; 2003 Jul; 63(3):237-51. PubMed ID: 12853169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects.
    Blankertz B; Dornhege G; Krauledat M; Müller KR; Curio G
    Neuroimage; 2007 Aug; 37(2):539-50. PubMed ID: 17475513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects.
    Blankertz B; Losch F; Krauledat M; Dornhege G; Curio G; Müller KR
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2452-62. PubMed ID: 18838371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurofeedback-based motor imagery training for brain-computer interface (BCI).
    Hwang HJ; Kwon K; Im CH
    J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mu-rhythm matched filter for continuous control of a brain-computer interface.
    Krusienski DJ; Schalk G; McFarland DJ; Wolpaw JR
    IEEE Trans Biomed Eng; 2007 Feb; 54(2):273-80. PubMed ID: 17278584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EEG-based brain computer interface (BCI). Search for optimal electrode positions and frequency components.
    Pfurtscheller G; Flotzinger D; Pregenzer M; Wolpaw JR; McFarland D
    Med Prog Technol; 1995-1996; 21(3):111-21. PubMed ID: 8776708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EEG changes accompanying learned regulation of 12-Hz EEG activity.
    Delorme A; Makeig S
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):133-7. PubMed ID: 12899255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning to control brain rhythms: making a brain-computer interface possible.
    Pineda JA; Silverman DS; Vankov A; Hestenes J
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):181-4. PubMed ID: 12899268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast attainment of computer cursor control with noninvasively acquired brain signals.
    Bradberry TJ; Gentili RJ; Contreras-Vidal JL
    J Neural Eng; 2011 Jun; 8(3):036010. PubMed ID: 21493978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How many people are able to control a P300-based brain-computer interface (BCI)?
    Guger C; Daban S; Sellers E; Holzner C; Krausz G; Carabalona R; Gramatica F; Edlinger G
    Neurosci Lett; 2009 Oct; 462(1):94-8. PubMed ID: 19545601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain-computer interface signal processing at the Wadsworth Center: mu and sensorimotor beta rhythms.
    McFarland DJ; Krusienski DJ; Wolpaw JR
    Prog Brain Res; 2006; 159():411-9. PubMed ID: 17071245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Wadsworth Center brain-computer interface (BCI) research and development program.
    Wolpaw JR; McFarland DJ; Vaughan TM; Schalk G
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):204-7. PubMed ID: 12899275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural mechanisms of brain-computer interface control.
    Halder S; Agorastos D; Veit R; Hammer EM; Lee S; Varkuti B; Bogdan M; Rosenstiel W; Birbaumer N; Kübler A
    Neuroimage; 2011 Apr; 55(4):1779-90. PubMed ID: 21256234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BCI Competition 2003--Data set IIa: spatial patterns of self-controlled brain rhythm modulations.
    Blanchard G; Blankertz B
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):1062-6. PubMed ID: 15188879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.