These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

982 related articles for article (PubMed ID: 15589184)

  • 1. Brain-computer interface (BCI) operation: signal and noise during early training sessions.
    McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR
    Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensorimotor rhythm-based brain-computer interface (BCI): feature selection by regression improves performance.
    McFarland DJ; Wolpaw JR
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):372-9. PubMed ID: 16200760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of EEG activity into cursor movement by a brain-computer interface (BCI).
    Fabiani GE; McFarland DJ; Wolpaw JR; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):331-8. PubMed ID: 15473195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.
    Huang D; Lin P; Fei DY; Chen X; Bai O
    J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface.
    Neuper C; Scherer R; Wriessnegger S; Pfurtscheller G
    Clin Neurophysiol; 2009 Feb; 120(2):239-47. PubMed ID: 19121977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-computer interface (BCI) operation: optimizing information transfer rates.
    McFarland DJ; Sarnacki WA; Wolpaw JR
    Biol Psychol; 2003 Jul; 63(3):237-51. PubMed ID: 12853169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects.
    Blankertz B; Dornhege G; Krauledat M; Müller KR; Curio G
    Neuroimage; 2007 Aug; 37(2):539-50. PubMed ID: 17475513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects.
    Blankertz B; Losch F; Krauledat M; Dornhege G; Curio G; Müller KR
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2452-62. PubMed ID: 18838371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurofeedback-based motor imagery training for brain-computer interface (BCI).
    Hwang HJ; Kwon K; Im CH
    J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mu-rhythm matched filter for continuous control of a brain-computer interface.
    Krusienski DJ; Schalk G; McFarland DJ; Wolpaw JR
    IEEE Trans Biomed Eng; 2007 Feb; 54(2):273-80. PubMed ID: 17278584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EEG-based brain computer interface (BCI). Search for optimal electrode positions and frequency components.
    Pfurtscheller G; Flotzinger D; Pregenzer M; Wolpaw JR; McFarland D
    Med Prog Technol; 1995-1996; 21(3):111-21. PubMed ID: 8776708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EEG changes accompanying learned regulation of 12-Hz EEG activity.
    Delorme A; Makeig S
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):133-7. PubMed ID: 12899255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning to control brain rhythms: making a brain-computer interface possible.
    Pineda JA; Silverman DS; Vankov A; Hestenes J
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):181-4. PubMed ID: 12899268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast attainment of computer cursor control with noninvasively acquired brain signals.
    Bradberry TJ; Gentili RJ; Contreras-Vidal JL
    J Neural Eng; 2011 Jun; 8(3):036010. PubMed ID: 21493978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How many people are able to control a P300-based brain-computer interface (BCI)?
    Guger C; Daban S; Sellers E; Holzner C; Krausz G; Carabalona R; Gramatica F; Edlinger G
    Neurosci Lett; 2009 Oct; 462(1):94-8. PubMed ID: 19545601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain-computer interface signal processing at the Wadsworth Center: mu and sensorimotor beta rhythms.
    McFarland DJ; Krusienski DJ; Wolpaw JR
    Prog Brain Res; 2006; 159():411-9. PubMed ID: 17071245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Wadsworth Center brain-computer interface (BCI) research and development program.
    Wolpaw JR; McFarland DJ; Vaughan TM; Schalk G
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):204-7. PubMed ID: 12899275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural mechanisms of brain-computer interface control.
    Halder S; Agorastos D; Veit R; Hammer EM; Lee S; Varkuti B; Bogdan M; Rosenstiel W; Birbaumer N; Kübler A
    Neuroimage; 2011 Apr; 55(4):1779-90. PubMed ID: 21256234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BCI Competition 2003--Data set IIa: spatial patterns of self-controlled brain rhythm modulations.
    Blanchard G; Blankertz B
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):1062-6. PubMed ID: 15188879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 50.