These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 15589345)

  • 1. In vivo voltammetry: from wire to wireless measurements.
    Crespi F; Dalessandro D; Annovazzi-Lodi V; Heidbreder C; Norgia M
    J Neurosci Methods; 2004 Dec; 140(1-2):153-61. PubMed ID: 15589345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wireless in vivo voltammetric measurements of neurotransmitters in freely behaving rats.
    Crespi F
    Biosens Bioelectron; 2010 Jul; 25(11):2425-30. PubMed ID: 20430607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wireless transmission of fast-scan cyclic voltammetry at a carbon-fiber microelectrode: proof of principle.
    Garris PA; Ensman R; Poehlman J; Alexander A; Langley PE; Sandberg SG; Greco PG; Wightman RM; Rebec GV
    J Neurosci Methods; 2004 Dec; 140(1-2):103-15. PubMed ID: 15589340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless voltammetry recording in unanesthetised behaving rats.
    Kagohashi M; Nakazato T; Yoshimi K; Moizumi S; Hattori N; Kitazawa S
    Neurosci Res; 2008 Jan; 60(1):120-7. PubMed ID: 17983679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-sensitive liquid chromatographic method for determination of neuronal release of serotonin, noradrenaline and dopamine monitored by microdialysis in the rat prefrontal cortex.
    Yoshitake T; Yoshitake S; Fujino K; Nohta H; Yamaguchi M; Kehr J
    J Neurosci Methods; 2004 Dec; 140(1-2):163-8. PubMed ID: 15589346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of the Wireless Instantaneous Neurotransmitter Concentration System for intraoperative neurochemical monitoring using fast-scan cyclic voltammetry.
    Bledsoe JM; Kimble CJ; Covey DP; Blaha CD; Agnesi F; Mohseni P; Whitlock S; Johnson DM; Horne A; Bennet KE; Lee KH; Garris PA
    J Neurosurg; 2009 Oct; 111(4):712-23. PubMed ID: 19425890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous real-time amperometric measurement of catecholamines and serotonin at carbon fibre 'dident' microelectrodes.
    Pennington JM; Millar J; L Jones CP; Owesson CA; McLaughlin DP; Stamford JA
    J Neurosci Methods; 2004 Dec; 140(1-2):5-13. PubMed ID: 15589328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single-chip signal processing and telemetry engine for an implantable 96-channel neural data acquisition system.
    Rizk M; Obeid I; Callender SH; Wolf PD
    J Neural Eng; 2007 Sep; 4(3):309-21. PubMed ID: 17873433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel miniature telemetric system for recording EEG activity in freely moving rats.
    Lapray D; Bergeler J; Dupont E; Thews O; Luhmann HJ
    J Neurosci Methods; 2008 Feb; 168(1):119-26. PubMed ID: 17983664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An optical telemetry system for underwater recording of electromyogram and neuronal activity from non-tethered crayfish.
    Tsuchida Y; Hama N; Takahata M
    J Neurosci Methods; 2004 Aug; 137(1):103-9. PubMed ID: 15196832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A TinyOS-enabled MICA2-based wireless neural interface.
    Farshchi S; Nuyujukian PH; Pesterev A; Mody I; Judy JW
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1416-24. PubMed ID: 16830946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A portable telemetry system for brain stimulation and neuronal activity recording in freely behaving small animals.
    Ye X; Wang P; Liu J; Zhang S; Jiang J; Wang Q; Chen W; Zheng X
    J Neurosci Methods; 2008 Sep; 174(2):186-93. PubMed ID: 18674564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of kinetically resolved vesicular dopamine uptake and efflux using rotating disk electrode voltammetry.
    Volz TJ; Hanson GR; Fleckenstein AE
    J Neurosci Methods; 2006 Jul; 155(1):109-15. PubMed ID: 16480775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A low-cost multichannel wireless neural stimulation system for freely roaming animals.
    Alam M; Chen X; Fernandez E
    J Neural Eng; 2013 Dec; 10(6):066010. PubMed ID: 24162159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and characterization of an implantable biosensor for telemetric monitoring of ethanol in the brain of freely moving rats.
    Rocchitta G; Secchi O; Alvau MD; Migheli R; Calia G; Bazzu G; Farina D; Desole MS; O'Neill RD; Serra PA
    Anal Chem; 2012 Aug; 84(16):7072-9. PubMed ID: 22823474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo.
    Swamy BE; Venton BJ
    Analyst; 2007 Sep; 132(9):876-84. PubMed ID: 17710262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A programmable microsystem using system-on-chip for real-time biotelemetry.
    Wang L; Johannessen EA; Hammond PA; Cui L; Reid SW; Cooper JM; Cumming DR
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1251-60. PubMed ID: 16041988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated wireless neural interface based on the Utah electrode array.
    Kim S; Bhandari R; Klein M; Negi S; Rieth L; Tathireddy P; Toepper M; Oppermann H; Solzbacher F
    Biomed Microdevices; 2009 Apr; 11(2):453-66. PubMed ID: 19067174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundamental study on transcutaneous biotelemetry using diffused light.
    Kudo N; Shimizu K; Matsumoto G
    Front Med Biol Eng; 1988; 1(1):19-28. PubMed ID: 3153656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time monitoring of brain tissue oxygen using a miniaturized biotelemetric device implanted in freely moving rats.
    Bazzu G; Puggioni GG; Dedola S; Calia G; Rocchitta G; Migheli R; Desole MS; Lowry JP; O'Neill RD; Serra PA
    Anal Chem; 2009 Mar; 81(6):2235-41. PubMed ID: 19222224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.