BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 15589543)

  • 1. CFD simulation of aggregation and breakage processes in laminar Taylor-Couette flow.
    Wang L; Marchisio DL; Vigil RD; Fox RO
    J Colloid Interface Sci; 2005 Feb; 282(2):380-96. PubMed ID: 15589543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CFD simulation of shear-induced aggregation and breakage in turbulent Taylor-Couette flow.
    Wang L; Vigil RD; Fox RO
    J Colloid Interface Sci; 2005 May; 285(1):167-78. PubMed ID: 15797411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Population balance modeling of aggregation and breakage in turbulent Taylor-Couette flow.
    Soos M; Wang L; Fox RO; Sefcik J; Morbidelli M
    J Colloid Interface Sci; 2007 Mar; 307(2):433-46. PubMed ID: 17207497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements.
    Rayz VL; Boussel L; Acevedo-Bolton G; Martin AJ; Young WL; Lawton MT; Higashida R; Saloner D
    J Biomech Eng; 2008 Oct; 130(5):051011. PubMed ID: 19045518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.
    Ford MD; Nikolov HN; Milner JS; Lownie SP; Demont EM; Kalata W; Loth F; Holdsworth DW; Steinman DA
    J Biomech Eng; 2008 Apr; 130(2):021015. PubMed ID: 18412502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing the rotor design for controlled-shear affinity filtration using computational fluid dynamics.
    Francis P; Martinez DM; Taghipour F; Bowen BD; Haynes CA
    Biotechnol Bioeng; 2006 Dec; 95(6):1207-17. PubMed ID: 16937405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of 2-D colloidal particle aggregates held against flow stress in an ultrasound trap.
    Kuznetsova LA; Bazou D; Coakley WT
    Langmuir; 2007 Mar; 23(6):3009-16. PubMed ID: 17286416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of flow patterns in a ventricular assist device: a comparative study of particle image velocimetry and computational fluid dynamics.
    Sato K; Orihashi K; Kurosaki T; Tokumine A; Fukunaga S; Ninomiya S; Sueda T
    Artif Organs; 2009 Apr; 33(4):352-9. PubMed ID: 19335412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation and experimental verification of particle coagulation dynamics for a pulsed input.
    Li XY; Zhang JJ
    J Colloid Interface Sci; 2003 Jun; 262(1):149-61. PubMed ID: 16256591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brownian dynamics simulation and experimental study of colloidal particle deposition in a microchannel flow.
    Unni HN; Yang C
    J Colloid Interface Sci; 2005 Nov; 291(1):28-36. PubMed ID: 15964576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency of different shear devices on flocculation.
    Serra T; Colomer J; Logan BE
    Water Res; 2008 Feb; 42(4-5):1113-21. PubMed ID: 17889250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using a CFD model to understand the fluid dynamics promoting E. coli breakage in a high-pressure homogenizer.
    Miller J; Rogowski M; Kelly W
    Biotechnol Prog; 2002; 18(5):1060-7. PubMed ID: 12363358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregation and breakage dynamics of alumina particles under shear by coupled Computational Fluid Dynamics - Discrete Element Method.
    Zeng L; Franks GV; Goudeli E
    J Colloid Interface Sci; 2024 May; 661():750-760. PubMed ID: 38325173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations.
    Hariharan P; Giarra M; Reddy V; Day SW; Manning KB; Deutsch S; Stewart SF; Myers MR; Berman MR; Burgreen GW; Paterson EG; Malinauskas RA
    J Biomech Eng; 2011 Apr; 133(4):041002. PubMed ID: 21428676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validating CFD predictions of respiratory aerosol deposition: effects of upstream transition and turbulence.
    Worth Longest P; Vinchurkar S
    J Biomech; 2007; 40(2):305-16. PubMed ID: 16533511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using computational fluid dynamics to calculate the stimulus to the lateral line of a fish in still water.
    Rapo MA; Jiang H; Grosenbaugh MA; Coombs S
    J Exp Biol; 2009 May; 212(Pt 10):1494-505. PubMed ID: 19411543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rheometry-PIV of shear-thickening wormlike micelles.
    Marín-Santibañez BM; Pérez-Gonzalez J; de Vargas L; Rodríguez-Gonzalez F; Huelsz G
    Langmuir; 2006 Apr; 22(9):4015-26. PubMed ID: 16618140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and modeling study of breakage and restructuring of open and dense colloidal aggregates.
    Harshe YM; Lattuada M; Soos M
    Langmuir; 2011 May; 27(10):5739-52. PubMed ID: 21506535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bivariate Extension of the Quadrature Method of Moments for Modeling Simultaneous Coagulation and Sintering of Particle Populations.
    Wright DL; McGraw R; Rosner DE
    J Colloid Interface Sci; 2001 Apr; 236(2):242-251. PubMed ID: 11401370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the relative importance of rheology for image-based CFD models of the carotid bifurcation.
    Lee SW; Steinman DA
    J Biomech Eng; 2007 Apr; 129(2):273-8. PubMed ID: 17408332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.