These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 15589548)

  • 1. Monte Carlo and molecular dynamics simulations of methane in potassium montmorillonite clay hydrates at elevated pressures and temperatures.
    Titiloye JO; Skipper NT
    J Colloid Interface Sci; 2005 Feb; 282(2):422-7. PubMed ID: 15589548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo molecular simulation of the hydration of K-montmorillonite at 353 K and 625 bar.
    Chávez Mde L; de Pablo L; de Pablo JJ
    Langmuir; 2004 Nov; 20(24):10764-70. PubMed ID: 15544414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of Na-, K-, and Ca-montmorillonite at high temperatures and pressures: a Monte Carlo simulation.
    de Pablo L; Chávez ML; de Pablo JJ
    Langmuir; 2005 Nov; 21(23):10874-84. PubMed ID: 16262366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo molecular simulation of the hydration of Na-montmorillonite at reservoir conditions.
    de Pablo L; Chávez ML; Sum AK; de Pablo JJ
    J Chem Phys; 2004 Jan; 120(2):939-46. PubMed ID: 15267930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methane aqueous fluids in montmorillonite clay interlayer under near-surface geological conditions: a grand canonical Monte Carlo and molecular dynamics simulation study.
    Rao Q; Leng Y
    J Phys Chem B; 2014 Sep; 118(37):10956-65. PubMed ID: 25167085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of interlayer ions on methane hydrate formation in clay sediments.
    Yeon SH; Seol J; Seo YJ; Park Y; Koh DY; Park KP; Huh DG; Lee J; Lee H
    J Phys Chem B; 2009 Feb; 113(5):1245-8. PubMed ID: 19133761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydration of methane intercalated in Na-smectites with distinct layer charge: insights from molecular simulations.
    Zhou Q; Lu X; Liu X; Zhang L; He H; Zhu J; Yuan P
    J Colloid Interface Sci; 2011 Mar; 355(1):237-42. PubMed ID: 21193200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na-montmorillonite hydrates under ethane rich reservoirs: NPzzT and muPzzT simulations.
    Odriozola G; Aguilar JF; López-Lemus J
    J Chem Phys; 2004 Sep; 121(9):4266-75. PubMed ID: 15332974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of mechanical response of sodium montmorillonite interlayer with increasing hydration by molecular dynamics.
    Schmidt SR; Katti DR; Ghosh P; Katti KS
    Langmuir; 2005 Aug; 21(17):8069-76. PubMed ID: 16089421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydration/expansion and cation charge compensation modulate the Brønsted basicity of distorted clay water.
    Cervini-Silva J; Larson RA; Stucki JW
    Langmuir; 2006 Mar; 22(7):2961-5. PubMed ID: 16548541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of water on the intercalation of epoxy monomers in Na-montmorillonite.
    Bongiovanni R; Mazza D; Ronchetti S; Turcato EA
    J Colloid Interface Sci; 2006 Apr; 296(2):515-9. PubMed ID: 16242139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Simulation of Interlayer Structure and Dynamics in 12.4 Å Cs-Smectite Hydrates.
    Sutton R; Sposito G
    J Colloid Interface Sci; 2001 May; 237(2):174-184. PubMed ID: 11334533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The gap between crystalline and osmotic swelling of Na-montmorillonite: a Monte Carlo study.
    Meleshyn A; Bunnenberg C
    J Chem Phys; 2005 Jan; 122(3):34705. PubMed ID: 15740215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio molecular dynamics study of the hydration of Li(+), Na(+) and K(+) in a montmorillonite model. Influence of isomorphic substitution.
    Mignon P; Ugliengo P; Sodupe M; Hernandez ER
    Phys Chem Chem Phys; 2010 Jan; 12(3):688-97. PubMed ID: 20066354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The growth of structure I methane hydrate from molecular dynamics simulations.
    Tung YT; Chen LJ; Chen YP; Lin ST
    J Phys Chem B; 2010 Aug; 114(33):10804-13. PubMed ID: 20669917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of Ca-montmorillonite hydrates: a computer simulation study.
    Odriozola G; Aguilar JF
    J Chem Phys; 2005 Nov; 123(17):174708. PubMed ID: 16375558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interlayer expansion and mechanisms of anion sorption of Na-montmorillonite modified by cetylpyridinium chloride: a Monte Carlo study.
    Meleshyn A; Bunnenberg C
    J Phys Chem B; 2006 Feb; 110(5):2271-7. PubMed ID: 16471814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and modeling study on decomposition kinetics of methane hydrates in different media.
    Liang M; Chen G; Sun C; Yan L; Liu J; Ma Q
    J Phys Chem B; 2005 Oct; 109(40):19034-41. PubMed ID: 16853450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free energy, energy, and entropy of swelling in Cs-, Na-, and Sr-montmorillonite clays.
    Whitley HD; Smith DE
    J Chem Phys; 2004 Mar; 120(11):5387-95. PubMed ID: 15267412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrational spectra of methane clathrate hydrates from molecular dynamics simulation.
    Greathouse JA; Cygan RT; Simmons BA
    J Phys Chem B; 2006 Apr; 110(13):6428-31. PubMed ID: 16570934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.