BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 15589651)

  • 1. Cadmium uptake by tobacco as affected by liming, N form, and year of cultivation.
    Tsadilas CD; Karaivazoglou NA; Tsotsolis NC; Stamatiadis S; Samaras V
    Environ Pollut; 2005 Mar; 134(2):239-46. PubMed ID: 15589651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cadmium concentration in durum wheat grain (Triticum turgidum) as influenced by nitrogen rate, seeding date and soil type.
    Perilli P; Mitchell LG; Grant CA; Pisante M
    J Sci Food Agric; 2010 Apr; 90(5):813-22. PubMed ID: 20355117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of forms and rates of potassium fertilizers on cadmium uptake by two cultivars of spring wheat (Triticum aestivum, L.).
    Zhao ZQ; Zhu YG; Li HY; Smith SE; Smith FA
    Environ Int; 2004 Jan; 29(7):973-8. PubMed ID: 14592574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of chemical amendments on the concentration of cadmium and lead in long-term contaminated soils.
    Lee TM; Lai HY; Chen ZS
    Chemosphere; 2004 Dec; 57(10):1459-71. PubMed ID: 15519390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers.
    Lambert R; Grant C; Sauvé S
    Sci Total Environ; 2007 Jun; 378(3):293-305. PubMed ID: 17400282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metal contamination of arable soil and corn plant in the vicinity of a zinc smelting factory and stabilization by liming.
    Hong CO; Gutierrez J; Yun SW; Lee YB; Yu C; Kim PJ
    Arch Environ Contam Toxicol; 2009 Feb; 56(2):190-200. PubMed ID: 18704256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens.
    Yanai J; Zhao FJ; McGrath SP; Kosaki T
    Environ Pollut; 2006 Jan; 139(1):167-75. PubMed ID: 15998562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneity of cadmium concentration in soil as a source of uncertainty in plant uptake and its implications for human health risk assessment.
    Millis PR; Ramsey MH; John EA
    Sci Total Environ; 2004 Jun; 326(1-3):49-53. PubMed ID: 15142764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liming effects on cadmium stabilization in upland soil affected by gold mining activity.
    Hong CO; Lee DK; Chung DY; Kim PJ
    Arch Environ Contam Toxicol; 2007 May; 52(4):496-502. PubMed ID: 17253095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular localization of cadmium and structural changes in maize plants grown on a cadmium contaminated soil with and without liming.
    Cunha KP; do Nascimento CW; Pimentel RM; Ferreira CP
    J Hazard Mater; 2008 Dec; 160(1):228-34. PubMed ID: 18417284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil.
    Liang Y; Wong JW; Wei L
    Chemosphere; 2005 Jan; 58(4):475-83. PubMed ID: 15620739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China.
    Wang G; Su MY; Chen YH; Lin FF; Luo D; Gao SF
    Environ Pollut; 2006 Nov; 144(1):127-35. PubMed ID: 16516364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cadmium accumulation in deer tongue grass (Panicum clandestinum L.) and potential for trophic transfer to microtine rodents.
    Sankaran RP; Ebbs SD
    Environ Pollut; 2007 Jul; 148(2):580-9. PubMed ID: 17258848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass.
    Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC
    Sci Total Environ; 2008 Nov; 406(1-2):43-56. PubMed ID: 18799197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress.
    Jalloh MA; Chen J; Zhen F; Zhang G
    J Hazard Mater; 2009 Mar; 162(2-3):1081-5. PubMed ID: 18603363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils.
    Manousaki E; Kadukova J; Papadantonakis N; Kalogerakis N
    Environ Res; 2008 Mar; 106(3):326-32. PubMed ID: 17543928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of humic acids on the phytoextraction of cadmium from soil.
    Evangelou MW; Daghan H; Schaeffer A
    Chemosphere; 2004 Oct; 57(3):207-13. PubMed ID: 15312737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A regional-scale study on the crop uptake of cadmium from sandy soils: measurement and modeling.
    Ingwersen J; Streck T
    J Environ Qual; 2005; 34(3):1026-35. PubMed ID: 15888888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cadmium uptake by plants.
    Smolders E
    Int J Occup Med Environ Health; 2001; 14(2):177-83. PubMed ID: 11548068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadmium concentration in tobacco (Nicotiana tabacum L.) from different countries and its relationship with other elements.
    Lugon-Moulin N; Martin F; Krauss MR; Ramey PB; Rossi L
    Chemosphere; 2006 May; 63(7):1074-86. PubMed ID: 16310829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.