These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
355 related articles for article (PubMed ID: 15589653)
21. Interactions of Trametes versicolor, Coriolopsis rigida and the arbuscular mycorrhizal fungus Glomus deserticola on the copper tolerance of Eucalyptus globulus. Arriagada C; Aranda E; Sampedro I; Garcia-Romera I; Ocampo JA Chemosphere; 2009 Sep; 77(2):273-8. PubMed ID: 19692112 [TBL] [Abstract][Full Text] [Related]
22. Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta-analytical and conceptual perspectives. Audet P; Charest C Environ Pollut; 2007 Jun; 147(3):609-14. PubMed ID: 17118259 [TBL] [Abstract][Full Text] [Related]
23. The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake. Xu P; Christie P; Liu Y; Zhang J; Li X Environ Pollut; 2008 Nov; 156(1):215-20. PubMed ID: 18280625 [TBL] [Abstract][Full Text] [Related]
24. Brevibacillus brevis isolated from cadmium- or zinc-contaminated soils improves in vitro spore germination and growth of Glomus mosseae under high Cd or Zn concentrations. Vivas A; Barea JM; Azcón R Microb Ecol; 2005 Apr; 49(3):416-24. PubMed ID: 16003472 [TBL] [Abstract][Full Text] [Related]
25. Improvement of growth of Eucalyptus globulus and soil biological parameters by amendment with sewage sludge and inoculation with arbuscular mycorrhizal and saprobe fungi. Arriagada C; Sampedro I; Garcia-Romera I; Ocampo J Sci Total Environ; 2009 Aug; 407(17):4799-806. PubMed ID: 19515400 [TBL] [Abstract][Full Text] [Related]
26. Fluorescent pseudomonads occurring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants. Duponnois R; Kisa M; Assigbetse K; Prin Y; Thioulouse J; Issartel M; Moulin P; Lepage M Sci Total Environ; 2006 Nov; 370(2-3):391-400. PubMed ID: 16989893 [TBL] [Abstract][Full Text] [Related]
27. Arbuscular mycorrhizal fungi mediated uptake of lanthanum in Chinese milk vetch (Astragalus sinicus L.). Chen XH; Zhao B Chemosphere; 2007 Jul; 68(8):1548-55. PubMed ID: 17475308 [TBL] [Abstract][Full Text] [Related]
28. Improvement of soil characteristics and growth of Dorycnium pentaphyllum by amendment with agrowastes and inoculation with AM fungi and/or the yeast Yarowia lipolytica. Medina A; Vassileva M; Caravaca F; Roldán A; Azcón R Chemosphere; 2004 Aug; 56(5):449-56. PubMed ID: 15212910 [TBL] [Abstract][Full Text] [Related]
29. Arbuscular mycorrhizal fungi-parasite-host interaction for the control of Striga hermonthica (Del.) Benth. in sorghum [Sorghum bicolor (L.) Moench]. Gworgwor NA; Weber HC Mycorrhiza; 2003 Oct; 13(5):277-81. PubMed ID: 12712374 [TBL] [Abstract][Full Text] [Related]
30. Testing nickel tolerance of Sorghastrum nutans and its associated soil microbial community from serpentine and prairie soils. Doherty JH; Ji B; Casper BB Environ Pollut; 2008 Feb; 151(3):593-8. PubMed ID: 17555852 [TBL] [Abstract][Full Text] [Related]
31. Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Chang Q; Diao FW; Wang QF; Pan L; Dang ZH; Guo W Environ Pollut; 2018 Oct; 241():607-615. PubMed ID: 29886381 [TBL] [Abstract][Full Text] [Related]
32. Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L. Rapparini F; Llusià J; Peñuelas J Plant Biol (Stuttg); 2008 Jan; 10(1):108-22. PubMed ID: 18211551 [TBL] [Abstract][Full Text] [Related]
33. Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in Northern Italy. Vallino M; Massa N; Lumini E; Bianciotto V; Berta G; Bonfante P Environ Microbiol; 2006 Jun; 8(6):971-83. PubMed ID: 16689718 [TBL] [Abstract][Full Text] [Related]
34. Inoculation of field-established mulberry and papaya with arbuscular mycorrhizal fungi and a mycorrhiza helper bacterium. Mamatha G; Bagyaraj DJ; Jaganath S Mycorrhiza; 2002 Dec; 12(6):313-6. PubMed ID: 12466919 [TBL] [Abstract][Full Text] [Related]
35. Enhanced dissipation of phenanthrene in spiked soil by arbuscular mycorrhizal alfalfa combined with a non-ionic surfactant amendment. Wu N; Zhang S; Huang H; Christie P Sci Total Environ; 2008 May; 394(2-3):230-6. PubMed ID: 18313725 [TBL] [Abstract][Full Text] [Related]
36. Arbuscular mycorrhizal fungi enhance both absorption and stabilization of Cd by Alfred stonecrop (Sedum alfredii Hance) and perennial ryegrass (Lolium perenne L.) in a Cd-contaminated acidic soil. Hu J; Wu S; Wu F; Leung HM; Lin X; Wong MH Chemosphere; 2013 Oct; 93(7):1359-65. PubMed ID: 24011894 [TBL] [Abstract][Full Text] [Related]
37. Effects of inoculation with arbuscular mycorrhizal fungi on maize grown in multi-metal contaminated soils. Liang CC; Li T; Xiao YP; Liu MJ; Zhang HB; Zhao ZW Int J Phytoremediation; 2009; 11(8):692-703. PubMed ID: 19810598 [TBL] [Abstract][Full Text] [Related]
38. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Chen B; Xiao X; Zhu YG; Smith FA; Xie ZM; Smith SE Sci Total Environ; 2007 Jul; 379(2-3):226-34. PubMed ID: 17157359 [TBL] [Abstract][Full Text] [Related]
39. Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. Olsson PA; Rahm J; Aliasgharzad N FEMS Microbiol Ecol; 2010 Apr; 72(1):125-31. PubMed ID: 20459516 [TBL] [Abstract][Full Text] [Related]
40. A study on the effects of lead, cadmium and phosphorus on the lead and cadmium uptake efficacy of Viola baoshanensis inoculated with arbuscular mycorrhizal fungi. Zhong WL; Li JT; Chen YT; Shu WS; Liao B J Environ Monit; 2012 Sep; 14(9):2497-504. PubMed ID: 22864990 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]