BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 15589845)

  • 1. Specific interaction between S6K1 and CoA synthase: a potential link between the mTOR/S6K pathway, CoA biosynthesis and energy metabolism.
    Nemazanyy I; Panasyuk G; Zhyvoloup A; Panayotou G; Gout IT; Filonenko V
    FEBS Lett; 2004 Dec; 578(3):357-62. PubMed ID: 15589845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Receptor association and tyrosine phosphorylation of S6 kinases.
    Rebholz H; Panasyuk G; Fenton T; Nemazanyy I; Valovka T; Flajolet M; Ronnstrand L; Stephens L; West A; Gout IT
    FEBS J; 2006 May; 273(9):2023-36. PubMed ID: 16640565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosomal S6 kinase signaling and the control of translation.
    Dufner A; Thomas G
    Exp Cell Res; 1999 Nov; 253(1):100-9. PubMed ID: 10579915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noradrenaline enhances the expression of the neuronal monocarboxylate transporter MCT2 by translational activation via stimulation of PI3K/Akt and the mTOR/S6K pathway.
    Chenal J; Pellerin L
    J Neurochem; 2007 Jul; 102(2):389-97. PubMed ID: 17394554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer.
    Dann SG; Selvaraj A; Thomas G
    Trends Mol Med; 2007 Jun; 13(6):252-9. PubMed ID: 17452018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammalian target of rapamycin, a molecular target in squamous cell carcinomas of the head and neck.
    Amornphimoltham P; Patel V; Sodhi A; Nikitakis NG; Sauk JJ; Sausville EA; Molinolo AA; Gutkind JS
    Cancer Res; 2005 Nov; 65(21):9953-61. PubMed ID: 16267020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reelin signals through phosphatidylinositol 3-kinase and Akt to control cortical development and through mTor to regulate dendritic growth.
    Jossin Y; Goffinet AM
    Mol Cell Biol; 2007 Oct; 27(20):7113-24. PubMed ID: 17698586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of ribosomal protein S6 kinases by ubiquitination.
    Wang ML; Panasyuk G; Gwalter J; Nemazanyy I; Fenton T; Filonenko V; Gout I
    Biochem Biophys Res Commun; 2008 May; 369(2):382-7. PubMed ID: 18280803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular network of phosphatidylinositol 3-kinase, mammalian target of the rapamycin/70 kDa ribosomal S6 kinase 1, and mitogen-activated protein kinases pathways for regulating mycobacteria-induced IL-23 expression in human macrophages.
    Yang CS; Song CH; Lee JS; Jung SB; Oh JH; Park J; Kim HJ; Park JK; Paik TH; Jo EK
    Cell Microbiol; 2006 Jul; 8(7):1158-71. PubMed ID: 16819968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mammalian target of rapamycin-signaling pathway in regulating metabolism and growth.
    Yang X; Yang C; Farberman A; Rideout TC; de Lange CF; France J; Fan MZ
    J Anim Sci; 2008 Apr; 86(14 Suppl):E36-50. PubMed ID: 17998426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of amino acids on glucose metabolism of isolated rat skeletal muscle are independent of insulin and the mTOR/S6K pathway.
    Stadlbauer K; Brunmair B; Szöcs Z; Krebs M; Luger A; Fürnsinn C
    Am J Physiol Endocrinol Metab; 2009 Sep; 297(3):E785-92. PubMed ID: 19622787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ubiquitination of ribosomal S6 kinases is independent from the mitogen-induced phosphorylation/activation of the kinase.
    Gwalter J; Wang ML; Gout I
    Int J Biochem Cell Biol; 2009 Apr; 41(4):828-33. PubMed ID: 18786649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of a constitutively T-loop phosphorylated and active recombinant S6K1: expression, purification, and enzymatic studies in a high capacity non-radioactive TR-FRET Lance assay.
    Zhang WG; Shor B; Yu K
    Protein Expr Purif; 2006 Apr; 46(2):414-20. PubMed ID: 16213157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of the activities of AMP-activated protein kinase, protein kinase B, and mammalian target of rapamycin by limiting energy availability with 2-deoxyglucose.
    Jiang W; Zhu Z; Thompson HJ
    Mol Carcinog; 2008 Aug; 47(8):616-28. PubMed ID: 18247380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal myocyte hypertrophy requires mTOR kinase activity and S6K1.
    Park IH; Erbay E; Nuzzi P; Chen J
    Exp Cell Res; 2005 Sep; 309(1):211-9. PubMed ID: 15963500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size.
    Ruvinsky I; Meyuhas O
    Trends Biochem Sci; 2006 Jun; 31(6):342-8. PubMed ID: 16679021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rheb activation of mTOR and S6K1 signaling.
    Hanrahan J; Blenis J
    Methods Enzymol; 2006; 407():542-55. PubMed ID: 16757352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ErbB2 increases vascular endothelial growth factor protein synthesis via activation of mammalian target of rapamycin/p70S6K leading to increased angiogenesis and spontaneous metastasis of human breast cancer cells.
    Klos KS; Wyszomierski SL; Sun M; Tan M; Zhou X; Li P; Yang W; Yin G; Hittelman WN; Yu D
    Cancer Res; 2006 Feb; 66(4):2028-37. PubMed ID: 16489002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IGF-1-stimulated protein synthesis in oligodendrocyte progenitors requires PI3K/mTOR/Akt and MEK/ERK pathways.
    Bibollet-Bahena O; Almazan G
    J Neurochem; 2009 Jun; 109(5):1440-51. PubMed ID: 19453943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapamycin inhibits cell motility by suppression of mTOR-mediated S6K1 and 4E-BP1 pathways.
    Liu L; Li F; Cardelli JA; Martin KA; Blenis J; Huang S
    Oncogene; 2006 Nov; 25(53):7029-40. PubMed ID: 16715128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.