BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 15590120)

  • 1. Sodium benzoate attenuates D-serine induced nephrotoxicity in the rat.
    Williams RE; Lock EA
    Toxicology; 2005 Feb; 207(1):35-48. PubMed ID: 15590120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1H NMR pattern recognition and 31P NMR studies with d-Serine in rat urine and kidney, time- and dose-related metabolic effects.
    Williams RE; Jacobsen M; Lock EA
    Chem Res Toxicol; 2003 Oct; 16(10):1207-16. PubMed ID: 14565762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why is D-serine nephrotoxic and alpha-aminoisobutyric acid protective?
    Krug AW; Völker K; Dantzler WH; Silbernagl S
    Am J Physiol Renal Physiol; 2007 Jul; 293(1):F382-90. PubMed ID: 17429029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D-Serine-induced nephrotoxicity: a HPLC-TOF/MS-based metabonomics approach.
    Williams RE; Major H; Lock EA; Lenz EM; Wilson ID
    Toxicology; 2005 Feb; 207(2):179-90. PubMed ID: 15596249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. D-serine-induced nephrotoxicity: possible interaction with tyrosine metabolism.
    Williams RE; Lock EA
    Toxicology; 2004 Sep; 201(1-3):231-8. PubMed ID: 15297036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response.
    Soto A; DelRaso NJ; Schlager JJ; Chan VT
    Toxicology; 2008 Jan; 243(1-2):177-92. PubMed ID: 18061331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of oxidative stress in D-serine induced nephrotoxicity.
    Orozco-Ibarra M; Medina-Campos ON; Sánchez-González DJ; Martínez-Martínez CM; Floriano-Sánchez E; Santamaría A; Ramirez V; Bobadilla NA; Pedraza-Chaverri J
    Toxicology; 2007 Jan; 229(1-2):123-35. PubMed ID: 17110013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Prevention of diltiazem in tacrolimus-induced nephrotoxicity: experiment with rats].
    Chen YH; Liang YX; Chen LQ; Liang JJ; Zhang J; Qiu J; Li WL; Hu JB; Xie KJ; Zhong WD; Chen LZ; Zheng KL
    Zhonghua Yi Xue Za Zhi; 2007 Aug; 87(32):2235-7. PubMed ID: 18001539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative effects of selective and non-selective nitric oxide synthase inhibition in gentamicin-induced rat nephrotoxicity.
    Ghaznavi R; Kadkhodaee M
    Arch Toxicol; 2007 Jun; 81(6):453-7. PubMed ID: 17039356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. D-serine nephrotoxicity. The nature of proteinuria, glucosuria, and aminoaciduria in acute tubular necrosis.
    Carone FA; Ganote CE
    Arch Pathol; 1975 Dec; 99(12):658-62. PubMed ID: 1203037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the role of hyperbaric oxygen therapy in cisplatin-induced nephrotoxicity in rats.
    Atasoyu EM; Yildiz S; Bilgi O; Cermik H; Evrenkaya R; Aktas S; Gültepe M; Kandemir EG
    Arch Toxicol; 2005 May; 79(5):289-93. PubMed ID: 15902426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atractyloside nephrotoxicity: in vitro studies with suspensions of rat renal fragments and precision-cut cortical slices.
    Obatomi DK; Bach PH
    In Vitr Mol Toxicol; 2000; 13(1):25-36. PubMed ID: 10900405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. D-amino-acid oxidase is involved in D-serine-induced nephrotoxicity.
    Maekawa M; Okamura T; Kasai N; Hori Y; Summer KH; Konno R
    Chem Res Toxicol; 2005 Nov; 18(11):1678-82. PubMed ID: 16300376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ontogenic aspects of cisplatin-induced nephrotoxicity in rats.
    Ali BH; Al-Moundhri M; Tageldin M; Al Husseini IS; Mansour MA; Nemmar A; Tanira MO
    Food Chem Toxicol; 2008 Nov; 46(11):3355-9. PubMed ID: 18790000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diquat induces renal proximal tubule injury in glutathione reductase-deficient mice.
    Rogers LK; Bates CM; Welty SE; Smith CV
    Toxicol Appl Pharmacol; 2006 Dec; 217(3):289-98. PubMed ID: 17078987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of gentamicin-induced renal dysfunction and injury by the phenolic extract of soybean (Glycine max).
    Ekor M; Farombi EO; Emerole GO
    Fundam Clin Pharmacol; 2006 Jun; 20(3):263-71. PubMed ID: 16671961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pentoxifylline prevents the meglumine antimonate-induced renal toxicity in rats, but not that induced by the inorganic antimony pentachloride.
    de Moura FJ; Leal PP; de Souza Furtado R; Muniz-Junqueira MI; Veiga JP
    Toxicology; 2008 Jan; 243(1-2):66-74. PubMed ID: 18022309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protection against cisplatin-induced nephrotoxicity by Spirulina in rats.
    Mohan IK; Khan M; Shobha JC; Naidu MU; Prayag A; Kuppusamy P; Kutala VK
    Cancer Chemother Pharmacol; 2006 Dec; 58(6):802-8. PubMed ID: 16552571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of cis-diamminedichloroplatinum(II) on rabbit kidney in vivo and on rabbit renal proximal tubule cells in culture.
    Tay LK; Bregman CL; Masters BA; Williams PD
    Cancer Res; 1988 May; 48(9):2538-43. PubMed ID: 2965614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aminoaciduria is an earlier index of renal tubular damage than conventional renal disease markers in the gentamicin-rat model of acute renal failure.
    Macpherson NA; Moscarello MA; Goldberg DM
    Clin Invest Med; 1991 Apr; 14(2):101-10. PubMed ID: 2060188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.