BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 15590147)

  • 1. Fast cerebellar oscillation associated with ataxia in a mouse model of Angelman syndrome.
    Cheron G; Servais L; Wagstaff J; Dan B
    Neuroscience; 2005; 130(3):631-7. PubMed ID: 15590147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mono- and dual-frequency fast cerebellar oscillation in mice lacking parvalbumin and/or calbindin D-28k.
    Servais L; Bearzatto B; Schwaller B; Dumont M; De Saedeleer C; Dan B; Barski JJ; Schiffmann SN; Cheron G
    Eur J Neurosci; 2005 Aug; 22(4):861-70. PubMed ID: 16115209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purkinje cell rhythmicity and synchronicity during modulation of fast cerebellar oscillation.
    Servais L; Cheron G
    Neuroscience; 2005; 134(4):1247-59. PubMed ID: 16054763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast oscillation in the cerebellar cortex of calcium binding protein-deficient mice: a new sensorimotor arrest rhythm.
    Cheron G; Servais L; Dan B; Gall D; Roussel C; Schiffmann SN
    Prog Brain Res; 2005; 148():165-80. PubMed ID: 15661189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissociation of locomotor and cerebellar deficits in a murine Angelman syndrome model.
    Bruinsma CF; Schonewille M; Gao Z; Aronica EM; Judson MC; Philpot BD; Hoebeek FE; van Woerden GM; De Zeeuw CI; Elgersma Y
    J Clin Invest; 2015 Nov; 125(11):4305-15. PubMed ID: 26485287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebellar network plasticity: from genes to fast oscillation.
    Cheron G; Servais L; Dan B
    Neuroscience; 2008 Apr; 153(1):1-19. PubMed ID: 18359574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreased tonic inhibition in cerebellar granule cells causes motor dysfunction in a mouse model of Angelman syndrome.
    Egawa K; Kitagawa K; Inoue K; Takayama M; Takayama C; Saitoh S; Kishino T; Kitagawa M; Fukuda A
    Sci Transl Med; 2012 Dec; 4(163):163ra157. PubMed ID: 23220633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model of very fast (> 75 Hz) network oscillations generated by electrical coupling between the proximal axons of cerebellar Purkinje cells.
    Traub RD; Middleton SJ; Knöpfel T; Whittington MA
    Eur J Neurosci; 2008 Oct; 28(8):1603-16. PubMed ID: 18973579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of gabazine on sensory stimulation train evoked response in mouse cerebellar Purkinje cells.
    Bing YH; Jin WZ; Sun L; Chu CP; Qiu DL
    Pharmazie; 2015 Feb; 70(2):129-34. PubMed ID: 25997254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of cerebellar function in Ube3a-deficient mice reveals novel genotype-specific behaviors.
    Heck DH; Zhao Y; Roy S; LeDoux MS; Reiter LT
    Hum Mol Genet; 2008 Jul; 17(14):2181-9. PubMed ID: 18413322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From electrophysiology to chromatin: a bottom-up approach to Angelman syndrome.
    Dan B; Servais L; Boyd SG; Wagstaff J; Cheron G
    Ann N Y Acad Sci; 2004 Dec; 1030():599-611. PubMed ID: 15659843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced G protein-dependent modulation of excitatory synaptic transmission in the cerebellum of the Ca2+ channel-mutant mouse, tottering.
    Zhou YD; Turner TJ; Dunlap K
    J Physiol; 2003 Mar; 547(Pt 2):497-507. PubMed ID: 12562906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired motor coordination and persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking Galphaq.
    Offermanns S; Hashimoto K; Watanabe M; Sun W; Kurihara H; Thompson RF; Inoue Y; Kano M; Simon MI
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):14089-94. PubMed ID: 9391157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology.
    Dindot SV; Antalffy BA; Bhattacharjee MB; Beaudet AL
    Hum Mol Genet; 2008 Jan; 17(1):111-8. PubMed ID: 17940072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of Cav2.1(alpha1(A)) subunit of Ca2+-channels impairs synaptic GABA and glutamate release in the mouse cerebellar cortex in cultured slices.
    Lonchamp E; Dupont JL; Doussau F; Shin HS; Poulain B; Bossu JL
    Eur J Neurosci; 2009 Dec; 30(12):2293-307. PubMed ID: 20092572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angelman syndrome: current understanding and research prospects.
    Dan B
    Epilepsia; 2009 Nov; 50(11):2331-9. PubMed ID: 19874386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propagation of postsynaptic currents and potentials via gap junctions in GABAergic networks of the rat hippocampus.
    Zsiros V; Aradi I; Maccaferri G
    J Physiol; 2007 Jan; 578(Pt 2):527-44. PubMed ID: 17110410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensory stimulus evokes inhibition rather than excitation in cerebellar Purkinje cells in vivo in mice.
    Chu CP; Bing YH; Qiu DL
    Neurosci Lett; 2011 Jan; 487(2):182-6. PubMed ID: 20965231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased firing frequency of spontaneous action potentials in cerebellar Purkinje neurons of db/db mice results from altered auto-rhythmicity and diminished GABAergic tonic inhibition.
    Forero-Vivas ME; Hernández-Cruz A
    Gen Physiol Biophys; 2014; 33(1):29-41. PubMed ID: 24334530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postural rhythmic muscle bursting activity in Angelman syndrome.
    Dan B; Chéron G
    Brain Dev; 2004 Sep; 26(6):389-93. PubMed ID: 15275702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.