BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 15590161)

  • 1. In vivo evidence for a controlled offset of melatonin synthesis at dawn by the suprachiasmatic nucleus in the rat.
    Perreau-Lenz S; Kalsbeek A; Van Der Vliet J; Pévet P; Buijs RM
    Neuroscience; 2005; 130(3):797-803. PubMed ID: 15590161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal transmission from the suprachiasmatic nucleus to the pineal gland via the paraventricular nucleus: analysed from arg-vasopressin peptide, rPer2 mRNA and AVP mRNA changes and pineal AA-NAT mRNA after the melatonin injection during light and dark periods.
    Isobe Y; Nishino H
    Brain Res; 2004 Jul; 1013(2):204-11. PubMed ID: 15193530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suprachiasmatic control of melatonin synthesis in rats: inhibitory and stimulatory mechanisms.
    Perreau-Lenz S; Kalsbeek A; Garidou ML; Wortel J; van der Vliet J; van Heijningen C; Simonneaux V; Pévet P; Buijs RM
    Eur J Neurosci; 2003 Jan; 17(2):221-8. PubMed ID: 12542658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restricted feeding restores rhythmicity in the pineal gland of arrhythmic suprachiasmatic-lesioned rats.
    Feillet CA; Mendoza J; Pévet P; Challet E
    Eur J Neurosci; 2008 Dec; 28(12):2451-8. PubMed ID: 19087173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular components and mechanism of adrenergic signal transduction in mammalian pineal gland: regulation of melatonin synthesis.
    Gupta BB; Spessert R; Vollrath L
    Indian J Exp Biol; 2005 Feb; 43(2):115-49. PubMed ID: 15782814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melatonin, the pineal gland, and circadian rhythms.
    Cassone VM; Warren WS; Brooks DS; Lu J
    J Biol Rhythms; 1993; 8 Suppl():S73-81. PubMed ID: 8274765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamatergic clock output stimulates melatonin synthesis at night.
    Perreau-Lenz S; Kalsbeek A; Pévet P; Buijs RM
    Eur J Neurosci; 2004 Jan; 19(2):318-24. PubMed ID: 14725626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Daily variation of constitutively activated nuclear factor kappa B (NFKB) in rat pineal gland.
    Cecon E; Fernandes PA; Pinato L; Ferreira ZS; Markus RP
    Chronobiol Int; 2010 Jan; 27(1):52-67. PubMed ID: 20205557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A functional subdivision of the circadian clock is revealed by differential effects of melatonin administration.
    Tritschler L; Saboureau M; Pévet P; Bothorel B
    Neurosci Lett; 2006 Mar; 396(1):73-6. PubMed ID: 16368190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melatonin sees the light: blocking GABA-ergic transmission in the paraventricular nucleus induces daytime secretion of melatonin.
    Kalsbeek A; Garidou ML; Palm IF; Van Der Vliet J; Simonneaux V; Pévet P; Buijs RM
    Eur J Neurosci; 2000 Sep; 12(9):3146-54. PubMed ID: 10998098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphodiesterase 10A in the rat pineal gland: localization, daily and seasonal regulation of expression and influence on signal transduction.
    Spiwoks-Becker I; Wolloscheck T; Rickes O; Kelleher DK; Rohleder N; Weyer V; Spessert R
    Neuroendocrinology; 2011; 94(2):113-23. PubMed ID: 21474921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracing autonomic innervation of the rat pineal gland using viral transneuronal tracing.
    Larsen PJ
    Microsc Res Tech; 1999 Aug 15-Sep 1; 46(4-5):296-304. PubMed ID: 10469465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GABA release from suprachiasmatic nucleus terminals is necessary for the light-induced inhibition of nocturnal melatonin release in the rat.
    Kalsbeek A; Cutrera RA; Van Heerikhuize JJ; Van Der Vliet J; Buijs RM
    Neuroscience; 1999; 91(2):453-61. PubMed ID: 10366002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suprachiasmatic GABAergic inputs to the paraventricular nucleus control plasma glucose concentrations in the rat via sympathetic innervation of the liver.
    Kalsbeek A; La Fleur S; Van Heijningen C; Buijs RM
    J Neurosci; 2004 Sep; 24(35):7604-13. PubMed ID: 15342726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Regulation mechanism of melatonin rhythm in the pineal gland by light: experimental studies by in vivo microdialysis].
    Kanematsu N
    Hokkaido Igaku Zasshi; 1994 Jan; 69(1):46-64. PubMed ID: 8119657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The human pineal gland and melatonin in aging and Alzheimer's disease.
    Wu YH; Swaab DF
    J Pineal Res; 2005 Apr; 38(3):145-52. PubMed ID: 15725334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetrodotoxin administration in the suprachiasmatic nucleus prevents NMDA-induced reductions in pineal melatonin without influencing Per1 and Per2 mRNA levels.
    Paul KN; Gamble KL; Fukuhara C; Novak CM; Tosini G; Albers HE
    Eur J Neurosci; 2004 May; 19(10):2808-14. PubMed ID: 15147314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters.
    Simonneaux V; Ribelayga C
    Pharmacol Rev; 2003 Jun; 55(2):325-95. PubMed ID: 12773631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural pathways and neurotransmitters affecting melatonin synthesis.
    Ebadi M; Govitrapong P
    J Neural Transm Suppl; 1986; 21():125-55. PubMed ID: 2875124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural control of the pineal gland.
    Moore RY
    Behav Brain Res; 1996; 73(1-2):125-30. PubMed ID: 8788489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.