BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 15590988)

  • 1. Characteristics of 3,5,3'-triiodothyronine (T3)-uptake system of tadpole red blood cells: effect of endocrine-disrupting chemicals on cellular T3 response.
    Shimada N; Yamauchi K
    J Endocrinol; 2004 Dec; 183(3):627-37. PubMed ID: 15590988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular uptake of 3,5,3'-triiodothyronine and thyroxine by red blood and thymus cells.
    Galton VA; St Germain DL; Whittemore S
    Endocrinology; 1986 May; 118(5):1918-23. PubMed ID: 3486116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of endocrine disrupting chemicals on thyroid hormone binding to Japanese quail transthyretin and thyroid hormone receptor.
    Ishihara A; Nishiyama N; Sugiyama S; Yamauchi K
    Gen Comp Endocrinol; 2003 Oct; 134(1):36-43. PubMed ID: 13129501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endocrine disrupting chemicals: interference of thyroid hormone binding to transthyretins and to thyroid hormone receptors.
    Ishihara A; Sawatsubashi S; Yamauchi K
    Mol Cell Endocrinol; 2003 Jan; 199(1-2):105-17. PubMed ID: 12581883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between thyroid hormone transport and neutral amino acid transport in JAR human choriocarcinoma cells.
    Prasad PD; Leibach FH; Mahesh VB; Ganapathy V
    Endocrinology; 1994 Feb; 134(2):574-81. PubMed ID: 8299556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of the uptake of 3,5,3'-triiodo-L-thyronine and L-thyroxine into red blood cells of rainbow trout (Oncorhynchus mykiss).
    McLeese JM; Eales JG
    Gen Comp Endocrinol; 1996 Aug; 103(2):200-8. PubMed ID: 8812373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake of L-triiodothyronine sulphate by human choriocarcinoma cell line, JAr.
    Bernus I; Mitchell AM; Manley SW; Mortimer RH
    Placenta; 1999; 20(2-3):161-5. PubMed ID: 10195736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of thyroid system-disrupting chemicals using in vitro and in vivo screening assays in Xenopus laevis.
    Sugiyama S; Shimada N; Miyoshi H; Yamauchi K
    Toxicol Sci; 2005 Dec; 88(2):367-74. PubMed ID: 16179385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake of thyroxine in cultured anterior pituitary cells of euthyroid rats.
    Everts ME; Docter R; Moerings EP; van Koetsveld PM; Visser TJ; de Jong M; Krenning EP; Hennemann G
    Endocrinology; 1994 Jun; 134(6):2490-7. PubMed ID: 8194475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of thyroxine and triiodothyronine by nuclei of isolated tadpole liver cells.
    Kistler A; Yoshizato K; Frieden E
    Endocrinology; 1975 Oct; 97(4):1036-42. PubMed ID: 1081451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake of reverse T3 in the human choriocarcinoma cell line, JAr.
    Mitchell AM; Manley SW; Rowan KA; Mortimer RH
    Placenta; 1999 Jan; 20(1):65-70. PubMed ID: 9950146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug effects on triiodothyronine uptake by rat anterior pituitary cells in vitro.
    Lim CF; Loidl NM; Kennedy JA; Topliss DJ; Stockigt JR
    Exp Clin Endocrinol Diabetes; 1996; 104(2):151-7. PubMed ID: 8740939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Putative nuclear triiodothyronine receptors in tadpole liver during metamorphic climax.
    Galton VA; St Germain D
    Endocrinology; 1985 Sep; 117(3):912-6. PubMed ID: 2990877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saturable, stereospecific transport of 3,5,3'-triiodo-L-thyronine and L-thyroxine into GH4C1 pituitary cells.
    Yan Z; Hinkle PM
    J Biol Chem; 1993 Sep; 268(27):20179-84. PubMed ID: 8376378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of triiodothyronine transport and accumulation in rat erythrocytes.
    Osty J; Jego L; Francon J; Blondeau JP
    Endocrinology; 1988 Nov; 123(5):2303-11. PubMed ID: 3168926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake of triiodothyronine and triiodothyroacetic acid in neonatal rat cardiomyocytes: effects of metabolites and analogs.
    Verhoeven FA; Van der Putten HH; Hennemann G; Lamers JM; Visser TJ; Everts ME
    J Endocrinol; 2002 May; 173(2):247-55. PubMed ID: 12010632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of binding and uptake of 3,3',5-triido-L-thyronine in cultured mouse fibroblasts.
    Cheng SY
    Endocrinology; 1983 May; 112(5):1754-62. PubMed ID: 6299708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increase in 3,5,3'-triiodothyronine (T3)-binding sites in tadpole erythrocyte nuclei during spontaneous and T3-induced metamorphosis.
    Moriya T; Thomas CR; Frieden E
    Endocrinology; 1984 Jan; 114(1):170-5. PubMed ID: 6317343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for carrier-mediated uptake of triiodothyronine in cultured anterior pituitary cells of euthyroid rats.
    Everts ME; Docter R; van Buuren JC; van Koetsveld PM; Hofland LJ; de Jong M; Krenning EP; Hennemann G
    Endocrinology; 1993 Mar; 132(3):1278-85. PubMed ID: 8440189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake of 3,5,3'-triiodothyronine by cultured rat hepatoma cells is inhibitable by nonbile acid cholephils, diphenylhydantoin, and nonsteroidal antiinflammatory drugs.
    Topliss DJ; Kolliniatis E; Barlow JW; Lim CF; Stockigt JR
    Endocrinology; 1989 Feb; 124(2):980-6. PubMed ID: 2912709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.