These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 15591052)
1. Dynamics of arrestin-rhodopsin interactions: arrestin and retinal release are directly linked events. Sommer ME; Smith WC; Farrens DL J Biol Chem; 2005 Feb; 280(8):6861-71. PubMed ID: 15591052 [TBL] [Abstract][Full Text] [Related]
2. Influence of Arrestin on the Photodecay of Bovine Rhodopsin. Chatterjee D; Eckert CE; Slavov C; Saxena K; Fürtig B; Sanders CR; Gurevich VV; Wachtveitl J; Schwalbe H Angew Chem Int Ed Engl; 2015 Nov; 54(46):13555-60. PubMed ID: 26383645 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of arrestin-rhodopsin interactions: acidic phospholipids enable binding of arrestin to purified rhodopsin in detergent. Sommer ME; Smith WC; Farrens DL J Biol Chem; 2006 Apr; 281(14):9407-17. PubMed ID: 16428804 [TBL] [Abstract][Full Text] [Related]
4. Arrestin can act as a regulator of rhodopsin photochemistry. Sommer ME; Farrens DL Vision Res; 2006 Dec; 46(27):4532-46. PubMed ID: 17069872 [TBL] [Abstract][Full Text] [Related]
5. Arrestin-rhodopsin binding stoichiometry in isolated rod outer segment membranes depends on the percentage of activated receptors. Sommer ME; Hofmann KP; Heck M J Biol Chem; 2011 Mar; 286(9):7359-69. PubMed ID: 21169358 [TBL] [Abstract][Full Text] [Related]
6. The role of arrestin and retinoids in the regeneration pathway of rhodopsin. Hofmann KP; Pulvermüller A; Buczyłko J; Van Hooser P; Palczewski K J Biol Chem; 1992 Aug; 267(22):15701-6. PubMed ID: 1386362 [TBL] [Abstract][Full Text] [Related]
8. Alkylated hydroxylamine derivatives eliminate peripheral retinylidene Schiff bases but cannot enter the retinal binding pocket of light-activated rhodopsin. Piechnick R; Heck M; Sommer ME Biochemistry; 2011 Aug; 50(33):7168-76. PubMed ID: 21766795 [TBL] [Abstract][Full Text] [Related]
9. Rhodopsin arginine-135 mutants are phosphorylated by rhodopsin kinase and bind arrestin in the absence of 11-cis-retinal. Shi W; Sports CD; Raman D; Shirakawa S; Osawa S; Weiss ER Biochemistry; 1998 Apr; 37(14):4869-74. PubMed ID: 9538004 [TBL] [Abstract][Full Text] [Related]
10. Functional differences in the interaction of arrestin and its splice variant, p44, with rhodopsin. Pulvermüller A; Maretzki D; Rudnicka-Nawrot M; Smith WC; Palczewski K; Hofmann KP Biochemistry; 1997 Jul; 36(30):9253-60. PubMed ID: 9230059 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin. Krupnick JG; Gurevich VV; Benovic JL J Biol Chem; 1997 Jul; 272(29):18125-31. PubMed ID: 9218446 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of arrestin-rhodopsin interactions: loop movement is involved in arrestin activation and receptor binding. Sommer ME; Farrens DL; McDowell JH; Weber LA; Smith WC J Biol Chem; 2007 Aug; 282(35):25560-8. PubMed ID: 17606620 [TBL] [Abstract][Full Text] [Related]
13. Phosphorylation modulates the affinity of light-activated rhodopsin for G protein and arrestin. Gibson SK; Parkes JH; Liebman PA Biochemistry; 2000 May; 39(19):5738-49. PubMed ID: 10801324 [TBL] [Abstract][Full Text] [Related]
14. Novel fluorescent GPCR biosensor detects retinal equilibrium binding to opsin and active G protein and arrestin signaling conformations. Schafer CT; Shumate A; Farrens DL J Biol Chem; 2020 Dec; 295(51):17486-17496. PubMed ID: 33453993 [TBL] [Abstract][Full Text] [Related]
15. Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin. Zhuang T; Chen Q; Cho MK; Vishnivetskiy SA; Iverson TM; Gurevich VV; Sanders CR Proc Natl Acad Sci U S A; 2013 Jan; 110(3):942-7. PubMed ID: 23277586 [TBL] [Abstract][Full Text] [Related]
16. Arrestin residues involved in the functional binding of arrestin to phosphorylated, photolyzed rhodopsin. Ascano MT; Smith WC; Gregurick SK; Robinson PR Mol Vis; 2006 Dec; 12():1516-25. PubMed ID: 17167410 [TBL] [Abstract][Full Text] [Related]
17. Assays for activation of opsin by all-trans-retinal. Sachs K; Maretzki D; Hofmann KP Methods Enzymol; 2000; 315():238-51. PubMed ID: 10736706 [TBL] [Abstract][Full Text] [Related]
18. Rod outer segment retinol formation is independent of Abca4, arrestin, rhodopsin kinase, and rhodopsin palmitylation. Blakeley LR; Chen C; Chen CK; Chen J; Crouch RK; Travis GH; Koutalos Y Invest Ophthalmol Vis Sci; 2011 Jun; 52(6):3483-91. PubMed ID: 21398289 [TBL] [Abstract][Full Text] [Related]
19. Rapid degeneration of rod photoreceptors expressing self-association-deficient arrestin-1 mutant. Song X; Seo J; Baameur F; Vishnivetskiy SA; Chen Q; Kook S; Kim M; Brooks EK; Altenbach C; Hong Y; Hanson SM; Palazzo MC; Chen J; Hubbell WL; Gurevich EV; Gurevich VV Cell Signal; 2013 Dec; 25(12):2613-24. PubMed ID: 24012956 [TBL] [Abstract][Full Text] [Related]
20. Arrestin and its splice variant Arr1-370A (p44). Mechanism and biological role of their interaction with rhodopsin. Schröder K; Pulvermüller A; Hofmann KP J Biol Chem; 2002 Nov; 277(46):43987-96. PubMed ID: 12194979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]