BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 15591147)

  • 1. Glucocorticoid receptor blockade disinhibits pituitary-adrenal activity during the stress hyporesponsive period of the mouse.
    Schmidt MV; Levine S; Oitzl MS; van der Mark M; Müller MB; Holsboer F; de Kloet ER
    Endocrinology; 2005 Mar; 146(3):1458-64. PubMed ID: 15591147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered control of the hypothalamo-pituitary-adrenal axis in adult male rats exposed perinatally to food deprivation and/or dehydration.
    Sebaai N; Lesage J; Vieau D; Alaoui A; Dupouy JP; Deloof S
    Neuroendocrinology; 2002 Oct; 76(4):243-53. PubMed ID: 12411741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential and age-dependent effects of maternal deprivation on the hypothalamic-pituitary-adrenal axis of brown norway rats from youth to senescence.
    Workel JO; Oitzl MS; Fluttert M; Lesscher H; Karssen A; de Kloet ER
    J Neuroendocrinol; 2001 Jul; 13(7):569-80. PubMed ID: 11442771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic brain glucocorticoid receptor blockade enhances the rise in circadian and stress-induced pituitary-adrenal activity.
    van Haarst AD; Oitzl MS; Workel JO; de Kloet ER
    Endocrinology; 1996 Nov; 137(11):4935-43. PubMed ID: 8895366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lack of decrease in hypothalamic and hippocampal glucocorticoid receptor mRNA during starvation.
    Makino S; Kaneda T; Nishiyama M; Asaba K; Hashimoto K
    Neuroendocrinology; 2001 Aug; 74(2):120-8. PubMed ID: 11474219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic analysis of neuroendocrine development of fetal brain-pituitary-adrenal axis in late gestation.
    Keller-Wood M; Powers MJ; Gersting JA; Ali N; Wood CE
    Physiol Genomics; 2006 Feb; 24(3):218-24. PubMed ID: 16352695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sexually dimorphic effects of maternal adrenalectomy on hypothalamic corticotrophin-releasing factor, glucocorticoid receptor and anterior pituitary POMC mRNA levels in rat neonates.
    Halasz I; Rittenhouse PA; Zorrilla EP; Redei E
    Brain Res Dev Brain Res; 1997 Jun; 100(2):198-204. PubMed ID: 9205810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective blockade of the mineralocorticoid receptor impairs hypothalamic-pituitary-adrenal axis expression of habituation.
    Cole MA; Kalman BA; Pace TW; Topczewski F; Lowrey MJ; Spencer RL
    J Neuroendocrinol; 2000 Oct; 12(10):1034-42. PubMed ID: 11012846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perinatal food deprivation induces marked alterations of the hypothalamo-pituitary-adrenal axis in 8-month-old male rats both under basal conditions and after a dehydration period.
    Sebaai N; Lesage J; Breton C; Vieau D; Deloof S
    Neuroendocrinology; 2004; 79(4):163-73. PubMed ID: 15153750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corticosterone, brain mineralocorticoid receptors (MRs) and the activity of the hypothalamic-pituitary-adrenal (HPA) axis: the Lewis rat as an example of increased central MR capacity and a hyporesponsive HPA axis.
    Oitzl MS; van Haarst AD; Sutanto W; de Kloet ER
    Psychoneuroendocrinology; 1995; 20(6):655-75. PubMed ID: 8584606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The postnatal development of the hypothalamic-pituitary-adrenal axis in the mouse.
    Schmidt MV; Enthoven L; van der Mark M; Levine S; de Kloet ER; Oitzl MS
    Int J Dev Neurosci; 2003 May; 21(3):125-32. PubMed ID: 12711350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of aging on stress responsiveness and central corticosteroid receptors in the brown Norway rat.
    van Eekelen JA; Rots NY; Sutanto W; de Kloet ER
    Neurobiol Aging; 1992; 13(1):159-70. PubMed ID: 1311803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mineralo- and glucocorticoid receptor mrnas are differently regulated by corticosterone in the rat hippocampus and anterior pituitary.
    Hügin-Flores ME; Steimer T; Aubert ML; Schulz P
    Neuroendocrinology; 2004; 79(4):174-84. PubMed ID: 15153751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the glucocorticoid receptor antagonist Org 34850 on basal and stress-induced corticosterone secretion.
    Spiga F; Harrison LR; Wood SA; Atkinson HC; MacSweeney CP; Thomson F; Craighead M; Grassie M; Lightman SL
    J Neuroendocrinol; 2007 Nov; 19(11):891-900. PubMed ID: 17927667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for mineralocorticoid receptor facilitation of glucocorticoid receptor-dependent regulation of hypothalamic-pituitary-adrenal axis activity.
    Spencer RL; Kim PJ; Kalman BA; Cole MA
    Endocrinology; 1998 Jun; 139(6):2718-26. PubMed ID: 9607777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Traumatic brain injury regulates adrenocorticosteroid receptor mRNA levels in rat hippocampus.
    McCullers DL; Sullivan PG; Scheff SW; Herman JP
    Brain Res; 2002 Aug; 947(1):41-9. PubMed ID: 12144851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential regulation of type II corticosteroid receptor messenger ribonucleic acid expression in the rat anterior pituitary and hippocampus.
    Sheppard KE; Roberts JL; Blum M
    Endocrinology; 1990 Jul; 127(1):431-9. PubMed ID: 2361479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High neonatal leptin exposure enhances brain GR expression and feedback efficacy on the adrenocortical axis of developing rats.
    Proulx K; Clavel S; Nault G; Richard D; Walker CD
    Endocrinology; 2001 Nov; 142(11):4607-16. PubMed ID: 11606425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergent prolactin and pituitary-adrenal activity in rats selectively bred for different dopamine responsiveness.
    Rots NY; Cools AR; Oitzl MS; de Jong J; Sutanto W; de Kloet ER
    Endocrinology; 1996 May; 137(5):1678-86. PubMed ID: 8612501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of glucocorticoid receptor transcription and nuclear translocation during single and repeated immobilization stress.
    Noguchi T; Makino S; Matsumoto R; Nakayama S; Nishiyama M; Terada Y; Hashimoto K
    Endocrinology; 2010 Sep; 151(9):4344-55. PubMed ID: 20660064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.