These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 15591193)

  • 21. Dialogues on prediction errors.
    Niv Y; Schoenbaum G
    Trends Cogn Sci; 2008 Jul; 12(7):265-72. PubMed ID: 18567531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dopamine responses comply with basic assumptions of formal learning theory.
    Waelti P; Dickinson A; Schultz W
    Nature; 2001 Jul; 412(6842):43-8. PubMed ID: 11452299
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hippocampal memory system function and the regulation of cocaine self-administration behavior in rats.
    Black YD; Green-Jordan K; Eichenbaum HB; Kantak KM
    Behav Brain Res; 2004 May; 151(1-2):225-38. PubMed ID: 15084439
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A neural substrate of prediction and reward.
    Schultz W; Dayan P; Montague PR
    Science; 1997 Mar; 275(5306):1593-9. PubMed ID: 9054347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of CAMKII in reinforcement learning: a computational model of glutamate and dopamine signaling pathways.
    Wanjerkhede SM; Bapi RS
    Biol Cybern; 2011 Jun; 104(6):397-424. PubMed ID: 21701878
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dopamine, reinforcement learning, and addiction.
    Dayan P
    Pharmacopsychiatry; 2009 May; 42 Suppl 1():S56-65. PubMed ID: 19434556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural mechanisms of addiction: the role of reward-related learning and memory.
    Hyman SE; Malenka RC; Nestler EJ
    Annu Rev Neurosci; 2006; 29():565-98. PubMed ID: 16776597
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dopamine D3 as well as D2 receptor ligands attenuate the cue-induced cocaine-seeking in a relapse model in rats.
    Gál K; Gyertyán I
    Drug Alcohol Depend; 2006 Jan; 81(1):63-70. PubMed ID: 16005579
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the asymptotic equivalence between differential Hebbian and temporal difference learning.
    Kolodziejski C; Porr B; Wörgötter F
    Neural Comput; 2009 Apr; 21(4):1173-202. PubMed ID: 19018698
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Posterior weighted reinforcement learning with state uncertainty.
    Larsen T; Leslie DS; Collins EJ; Bogacz R
    Neural Comput; 2010 May; 22(5):1149-79. PubMed ID: 20100078
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overlapping prediction errors in dorsal striatum during instrumental learning with juice and money reward in the human brain.
    Valentin VV; O'Doherty JP
    J Neurophysiol; 2009 Dec; 102(6):3384-91. PubMed ID: 19793875
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The short-latency dopamine signal: a role in discovering novel actions?
    Redgrave P; Gurney K
    Nat Rev Neurosci; 2006 Dec; 7(12):967-75. PubMed ID: 17115078
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prefrontal cortex as a meta-reinforcement learning system.
    Wang JX; Kurth-Nelson Z; Kumaran D; Tirumala D; Soyer H; Leibo JZ; Hassabis D; Botvinick M
    Nat Neurosci; 2018 Jun; 21(6):860-868. PubMed ID: 29760527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Beyond simple reinforcement learning: the computational neurobiology of reward-learning and valuation.
    O'Doherty JP
    Eur J Neurosci; 2012 Apr; 35(7):987-90. PubMed ID: 22487029
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Addiction: decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain's control circuit.
    Volkow ND; Wang GJ; Fowler JS; Tomasi D; Telang F; Baler R
    Bioessays; 2010 Sep; 32(9):748-55. PubMed ID: 20730946
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The emergence of saliency and novelty responses from Reinforcement Learning principles.
    Laurent PA
    Neural Netw; 2008 Dec; 21(10):1493-9. PubMed ID: 18938058
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Learning that a cocaine reward is smaller than expected: A test of Redish's computational model of addiction.
    Marks KR; Kearns DN; Christensen CJ; Silberberg A; Weiss SJ
    Behav Brain Res; 2010 Oct; 212(2):204-7. PubMed ID: 20381539
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In Cocaine Dependence, Neural Prediction Errors During Loss Avoidance Are Increased With Cocaine Deprivation and Predict Drug Use.
    Wang JM; Zhu L; Brown VM; De La Garza R; Newton T; King-Casas B; Chiu PH
    Biol Psychiatry Cogn Neurosci Neuroimaging; 2019 Mar; 4(3):291-299. PubMed ID: 30297162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuroscience. A bite to remember.
    Rankin CH
    Science; 2002 May; 296(5573):1624-5. PubMed ID: 12040169
    [No Abstract]   [Full Text] [Related]  

  • 40. A model of reward choice based on the theory of reinforcement learning.
    Smirnitskaya IA; Frolov AA; Merzhanova GKh
    Neurosci Behav Physiol; 2008 Mar; 38(3):269-78. PubMed ID: 18264774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.