BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

999 related articles for article (PubMed ID: 15591202)

  • 21. Function of the plasmodium export element can be blocked by green fluorescent protein.
    Knuepfer E; Rug M; Cowman AF
    Mol Biochem Parasitol; 2005 Aug; 142(2):258-62. PubMed ID: 15951034
    [No Abstract]   [Full Text] [Related]  

  • 22. Genetic ablation of a Maurer's cleft protein prevents assembly of the Plasmodium falciparum virulence complex.
    Dixon MW; Kenny S; McMillan PJ; Hanssen E; Trenholme KR; Gardiner DL; Tilley L
    Mol Microbiol; 2011 Aug; 81(4):982-93. PubMed ID: 21696460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein unfolding is an essential requirement for transport across the parasitophorous vacuolar membrane of Plasmodium falciparum.
    Gehde N; Hinrichs C; Montilla I; Charpian S; Lingelbach K; Przyborski JM
    Mol Microbiol; 2009 Feb; 71(3):613-28. PubMed ID: 19040635
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum.
    Foth BJ; Ralph SA; Tonkin CJ; Struck NS; Fraunholz M; Roos DS; Cowman AF; McFadden GI
    Science; 2003 Jan; 299(5607):705-8. PubMed ID: 12560551
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for Golgi-independent transport from the early secretory pathway to the plastid in malaria parasites.
    Tonkin CJ; Struck NS; Mullin KA; Stimmler LM; McFadden GI
    Mol Microbiol; 2006 Aug; 61(3):614-30. PubMed ID: 16787449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A protein interaction network of the malaria parasite Plasmodium falciparum.
    LaCount DJ; Vignali M; Chettier R; Phansalkar A; Bell R; Hesselberth JR; Schoenfeld LW; Ota I; Sahasrabudhe S; Kurschner C; Fields S; Hughes RE
    Nature; 2005 Nov; 438(7064):103-7. PubMed ID: 16267556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The upstream sequence segment of the C-terminal cysteine-rich domain is required for microneme trafficking of Plasmodium falciparum erythrocyte binding antigen 175.
    Sakura T; Yahata K; Kaneko O
    Parasitol Int; 2013 Apr; 62(2):157-64. PubMed ID: 23268338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular mechanism for switching of P. falciparum invasion pathways into human erythrocytes.
    Stubbs J; Simpson KM; Triglia T; Plouffe D; Tonkin CJ; Duraisingh MT; Maier AG; Winzeler EA; Cowman AF
    Science; 2005 Aug; 309(5739):1384-7. PubMed ID: 16123303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Plasmodium falciparum RhopH2 promoter and first 24 amino acids are sufficient to target proteins to the rhoptries.
    Ghoneim A; Kaneko O; Tsuboi T; Torii M
    Parasitol Int; 2007 Mar; 56(1):31-43. PubMed ID: 17175193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A potential novel mechanism for the insertion of a membrane protein revealed by a biochemical analysis of the Plasmodium falciparum cytoadherence molecule PfEMP-1.
    Papakrivos J; Newbold CI; Lingelbach K
    Mol Microbiol; 2005 Feb; 55(4):1272-84. PubMed ID: 15686570
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Erythrocyte remodeling by malaria parasites.
    Haldar K; Mohandas N
    Curr Opin Hematol; 2007 May; 14(3):203-9. PubMed ID: 17414208
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intra- and extracellular routing in P. falciparum.
    Braun-Breton C; Langsley G; Mattei D; Scherf A
    Blood Cells; 1990; 16(2-3):396-400. PubMed ID: 2096984
    [No Abstract]   [Full Text] [Related]  

  • 33. A conditional export system provides new insights into protein export in Plasmodium falciparum-infected erythrocytes.
    Saridaki T; Sanchez CP; Pfahler J; Lanzer M
    Cell Microbiol; 2008 Dec; 10(12):2483-95. PubMed ID: 18691247
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Export of Plasmodium falciparum calcium-dependent protein kinase 1 to the parasitophorous vacuole is dependent on three N-terminal membrane anchor motifs.
    Möskes C; Burghaus PA; Wernli B; Sauder U; Dürrenberger M; Kappes B
    Mol Microbiol; 2004 Nov; 54(3):676-91. PubMed ID: 15491359
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeted mutagenesis of the ring-exported protein-1 of Plasmodium falciparum disrupts the architecture of Maurer's cleft organelles.
    Hanssen E; Hawthorne P; Dixon MW; Trenholme KR; McMillan PJ; Spielmann T; Gardiner DL; Tilley L
    Mol Microbiol; 2008 Aug; 69(4):938-53. PubMed ID: 18573183
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional genomics, new tools in malaria research.
    Di Girolamo F; Raggi C; Bultrini E; Lanfrancotti A; Silvestrini F; Sargiacomo M; Birago C; Pizzi E; Alano P; Ponzi M
    Ann Ist Super Sanita; 2005; 41(4):469-77. PubMed ID: 16569915
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting of the ring exported protein 1 to the Maurer's clefts is mediated by a two-phase process.
    Dixon MW; Hawthorne PL; Spielmann T; Anderson KL; Trenholme KR; Gardiner DL
    Traffic; 2008 Aug; 9(8):1316-26. PubMed ID: 18489703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteins of the Plasmodium falciparum two transmembrane Maurer's cleft protein family, PfMC-2TM, and the 130 kDa Maurer's cleft protein define different domains of the infected erythrocyte intramembranous network.
    Tsarukyanova I; Drazba JA; Fujioka H; Yadav SP; Sam-Yellowe TY
    Parasitol Res; 2009 Mar; 104(4):875-91. PubMed ID: 19130087
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein transport across the parasitophorous vacuole of Plasmodium falciparum: into the great wide open.
    Charpian S; Przyborski JM
    Traffic; 2008 Feb; 9(2):157-65. PubMed ID: 17944805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Membrane transport proteins of the malaria parasite.
    Martin RE; Ginsburg H; Kirk K
    Mol Microbiol; 2009 Nov; 74(3):519-28. PubMed ID: 19796339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 50.