BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

491 related articles for article (PubMed ID: 15591309)

  • 1. Hypoxic pulmonary vasoconstriction.
    Moudgil R; Michelakis ED; Archer SL
    J Appl Physiol (1985); 2005 Jan; 98(1):390-403. PubMed ID: 15591309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells.
    Michelakis ED; Thébaud B; Weir EK; Archer SL
    J Mol Cell Cardiol; 2004 Dec; 37(6):1119-36. PubMed ID: 15572043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A central role for oxygen-sensitive K+ channels and mitochondria in the specialized oxygen-sensing system.
    Archer SL; Michelakis ED; Thébaud B; Bonnet S; Moudgil R; Wu XC; Weir EK
    Novartis Found Symp; 2006; 272():157-71; discussion 171-5, 214-7. PubMed ID: 16686435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mitochondrial redox oxygen sensor in the pulmonary vasculature and ductus arteriosus.
    Dunham-Snary KJ; Hong ZG; Xiong PY; Del Paggio JC; Herr JE; Johri AM; Archer SL
    Pflugers Arch; 2016 Jan; 468(1):43-58. PubMed ID: 26395471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxic pulmonary vasoconstriction: redox events in oxygen sensing.
    Waypa GB; Schumacker PT
    J Appl Physiol (1985); 2005 Jan; 98(1):404-14. PubMed ID: 15591310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of k+ channels in determining pulmonary vascular tone, oxygen sensing, cell proliferation, and apoptosis: implications in hypoxic pulmonary vasoconstriction and pulmonary arterial hypertension.
    Moudgil R; Michelakis ED; Archer SL
    Microcirculation; 2006 Dec; 13(8):615-32. PubMed ID: 17085423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction.
    Sommer N; Strielkov I; Pak O; Weissmann N
    Eur Respir J; 2016 Jan; 47(1):288-303. PubMed ID: 26493804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxic Pulmonary Vasoconstriction: From Molecular Mechanisms to Medicine.
    Dunham-Snary KJ; Wu D; Sykes EA; Thakrar A; Parlow LRG; Mewburn JD; Parlow JL; Archer SL
    Chest; 2017 Jan; 151(1):181-192. PubMed ID: 27645688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neutral sphingomyelinase, NADPH oxidase and reactive oxygen species. Role in acute hypoxic pulmonary vasoconstriction.
    Frazziano G; Moreno L; Moral-Sanz J; Menendez C; Escolano L; Gonzalez C; Villamor E; Alvarez-Sala JL; Cogolludo AL; Perez-Vizcaino F
    J Cell Physiol; 2011 Oct; 226(10):2633-40. PubMed ID: 21792922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells.
    Archer SL; Wu XC; Thébaud B; Nsair A; Bonnet S; Tyrrell B; McMurtry MS; Hashimoto K; Harry G; Michelakis ED
    Circ Res; 2004 Aug; 95(3):308-18. PubMed ID: 15217912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxic pulmonary vasoconstriction: role of ion channels.
    Mauban JR; Remillard CV; Yuan JX
    J Appl Physiol (1985); 2005 Jan; 98(1):415-20. PubMed ID: 15591311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ndufs2, a Core Subunit of Mitochondrial Complex I, Is Essential for Acute Oxygen-Sensing and Hypoxic Pulmonary Vasoconstriction.
    Dunham-Snary KJ; Wu D; Potus F; Sykes EA; Mewburn JD; Charles RL; Eaton P; Sultanian RA; Archer SL
    Circ Res; 2019 Jun; 124(12):1727-1746. PubMed ID: 30922174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxic pulmonary vasoconstriction--invited article.
    Mark Evans A; Ward JP
    Adv Exp Med Biol; 2009; 648():351-60. PubMed ID: 19536499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction.
    Strielkov I; Pak O; Sommer N; Weissmann N
    J Appl Physiol (1985); 2017 Dec; 123(6):1647-1656. PubMed ID: 28751366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation.
    Archer SL; Weir EK; Reeve HL; Michelakis E
    Adv Exp Med Biol; 2000; 475():219-40. PubMed ID: 10849663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive oxygen species as mediators of oxygen signaling during fetal-to-neonatal circulatory transition.
    Villamor E; Moreno L; Mohammed R; Pérez-Vizcaíno F; Cogolludo A
    Free Radic Biol Med; 2019 Oct; 142():82-96. PubMed ID: 30995535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo gene transfer of the O2-sensitive potassium channel Kv1.5 reduces pulmonary hypertension and restores hypoxic pulmonary vasoconstriction in chronically hypoxic rats.
    Pozeg ZI; Michelakis ED; McMurtry MS; Thébaud B; Wu XC; Dyck JR; Hashimoto K; Wang S; Moudgil R; Harry G; Sultanian R; Koshal A; Archer SL
    Circulation; 2003 Apr; 107(15):2037-44. PubMed ID: 12695303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxic pulmonary vasoconstriction.
    A Mark E
    Essays Biochem; 2007; 43():61-76. PubMed ID: 17705793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potassium channel diversity in the pulmonary arteries and pulmonary veins: implications for regulation of the pulmonary vasculature in health and during pulmonary hypertension.
    Bonnet S; Archer SL
    Pharmacol Ther; 2007 Jul; 115(1):56-69. PubMed ID: 17583356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An anesthesiologist's guide to hypoxic pulmonary vasoconstriction: implications for managing single-lung anesthesia and atelectasis.
    Nagendran J; Stewart K; Hoskinson M; Archer SL
    Curr Opin Anaesthesiol; 2006 Feb; 19(1):34-43. PubMed ID: 16547431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.