These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 15591317)

  • 1. Kinetics of fibril formation by polyalanine peptides.
    Nguyen HD; Hall CK
    J Biol Chem; 2005 Mar; 280(10):9074-82. PubMed ID: 15591317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase diagrams describing fibrillization by polyalanine peptides.
    Nguyen HD; Hall CK
    Biophys J; 2004 Dec; 87(6):4122-34. PubMed ID: 15465859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous fibril formation by polyalanines; discontinuous molecular dynamics simulations.
    Nguyen HD; Hall CK
    J Am Chem Soc; 2006 Feb; 128(6):1890-901. PubMed ID: 16464090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural transitions and oligomerization along polyalanine fibril formation pathways from computer simulations.
    Phelps EM; Hall CK
    Proteins; 2012 Jun; 80(6):1582-97. PubMed ID: 22411226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides.
    Nguyen HD; Hall CK
    Proc Natl Acad Sci U S A; 2004 Nov; 101(46):16180-5. PubMed ID: 15534217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity of kinetic pathways in amyloid fibril formation.
    Bellesia G; Shea JE
    J Chem Phys; 2009 Sep; 131(11):111102. PubMed ID: 19778093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of beta-sheet propensity on peptide aggregation.
    Bellesia G; Shea JE
    J Chem Phys; 2009 Apr; 130(14):145103. PubMed ID: 19368476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing amyloid fibril formation of the NFGAIL peptide by computer simulations.
    Melquiond A; Gelly JC; Mousseau N; Derreumaux P
    J Chem Phys; 2007 Feb; 126(6):065101. PubMed ID: 17313247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation.
    Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M
    Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From Aβ Filament to Fibril: Molecular Mechanism of Surface-Activated Secondary Nucleation from All-Atom MD Simulations.
    Schwierz N; Frost CV; Geissler PL; Zacharias M
    J Phys Chem B; 2017 Feb; 121(4):671-682. PubMed ID: 27992231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and dynamics of parallel beta-sheets, hydrophobic core, and loops in Alzheimer's A beta fibrils.
    Buchete NV; Hummer G
    Biophys J; 2007 May; 92(9):3032-9. PubMed ID: 17293399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of Phe in the formation of well-ordered oligomers of amyloidogenic hexapeptide (NFGAIL) observed in molecular dynamics simulations with explicit solvent.
    Wu C; Lei H; Duan Y
    Biophys J; 2005 Apr; 88(4):2897-906. PubMed ID: 15653723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The kinetics of nucleated polymerizations at high concentrations: amyloid fibril formation near and above the "supercritical concentration".
    Powers ET; Powers DL
    Biophys J; 2006 Jul; 91(1):122-32. PubMed ID: 16603497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of amyloid-β fibril elongation.
    Gurry T; Stultz CM
    Biochemistry; 2014 Nov; 53(44):6981-91. PubMed ID: 25330398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-folding and aggregation of amyloid nanofibrils.
    Paparcone R; Cranford SW; Buehler MJ
    Nanoscale; 2011 Apr; 3(4):1748-55. PubMed ID: 21347488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleation of amyloid fibrils.
    Kashchiev D; Auer S
    J Chem Phys; 2010 Jun; 132(21):215101. PubMed ID: 20528047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulations of protein amyloid formation reveal origin of sigmoidal aggregation kinetics.
    Linse B; Linse S
    Mol Biosyst; 2011 Jul; 7(7):2296-303. PubMed ID: 21589952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Insights into the Dynamics of Amyloid Fibril Growth: Elongation and Lateral Assembly of GNNQQNY Protofibrils.
    John T; Rampioni A; Poger D; Mark AE
    ACS Chem Neurosci; 2024 Feb; 15(4):716-723. PubMed ID: 38235697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.