These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 15591363)

  • 1. Fermentation pH and temperature influence the cryotolerance of Lactobacillus acidophilus RD758.
    Wang Y; Corrieu G; Béal C
    J Dairy Sci; 2005 Jan; 88(1):21-9. PubMed ID: 15591363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Starvation induces physiological changes that act on the cryotolerance of Lactobacillus acidophilus RD758.
    Wang Y; Delettre J; Corrieu G; Béal C
    Biotechnol Prog; 2011; 27(2):342-50. PubMed ID: 21360838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of cooling temperature and duration on cold adaptation of Lactobacillus acidophilus RD758.
    Wang Y; Delettre J; Guillot A; Corrieu G; Béal C
    Cryobiology; 2005 Jun; 50(3):294-307. PubMed ID: 15925581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistance to freezing and frozen storage of Streptococcus thermophilus is related to membrane fatty acid composition.
    Beal C; Fonseca F; Corrieu G
    J Dairy Sci; 2001 Nov; 84(11):2347-56. PubMed ID: 11768074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acidification improves cryotolerance of Lactobacillus delbrueckii subsp. bulgaricus CFL1.
    Streit F; Corrieu G; Béal C
    J Biotechnol; 2007 Feb; 128(3):659-67. PubMed ID: 17194497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus induces physiological responses at membrane and cytosolic levels that improves cryotolerance.
    Streit F; Delettre J; Corrieu G; Béal C
    J Appl Microbiol; 2008 Oct; 105(4):1071-80. PubMed ID: 18498349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Operating conditions that affect the resistance of lactic acid bacteria to freezing and frozen storage.
    Fonseca F; Béal C; Corrieu G
    Cryobiology; 2001 Nov; 43(3):189-98. PubMed ID: 11888213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance.
    Alvarez-Ordóñez A; Fernández A; López M; Arenas R; Bernardo A
    Int J Food Microbiol; 2008 Apr; 123(3):212-9. PubMed ID: 18313782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfiltration conditions modify Lactobacillus bulgaricus cryotolerance in response to physiological changes.
    Streit F; Athès V; Bchir A; Corrieu G; Béal C
    Bioprocess Biosyst Eng; 2011 Feb; 34(2):197-204. PubMed ID: 20803034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Survival during frozen and subsequent refrigerated storage of Lactobacillus acidophilus cells as influenced by the growth phase.
    Brashears MM; Gilliland SE
    J Dairy Sci; 1995 Nov; 78(11):2326-35. PubMed ID: 8747323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of lipid composition on the stability of cellular membranes during freeze-thawing of Lactobacillus acidophilus grown at different temperatures.
    Fernández Murga ML; Font de Valdez G; Disalvo EA
    Arch Biochem Biophys; 2001 Apr; 388(2):179-84. PubMed ID: 11368153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of growth temperature on cryotolerance and lipid composition of Lactobacillus acidophilus.
    Murga ML; Cabrera GM; De Valdez GF; Disalvo A; Seldes AM
    J Appl Microbiol; 2000 Feb; 88(2):342-8. PubMed ID: 10736004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the cryotolerance of Lactobacillus acidophilus: effect of culture and freezing conditions on the viability and cellular protein levels.
    Bâati L; Fabre-Gea C; Auriol D; Blanc PJ
    Int J Food Microbiol; 2000 Sep; 59(3):241-7. PubMed ID: 11020044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Permeability and stability properties of membranes formed by lipids extracted from Lactobacillus acidophilus grown at different temperatures.
    Fernández Murga ML; Bernik D; Font de Valdez G; Disalvo AE
    Arch Biochem Biophys; 1999 Apr; 364(1):115-21. PubMed ID: 10087172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Survival of Lactobacillus acidophilus and Bifidobacterium bifidum in ice cream for use as a probiotic food.
    Hekmat S; McMahon DJ
    J Dairy Sci; 1992 Jun; 75(6):1415-22. PubMed ID: 1500547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between membrane fatty acid composition and heat resistance of acid and cold stressed Salmonella senftenberg CECT 4384.
    Alvarez-Ordóñez A; Fernández A; López M; Bernardo A
    Food Microbiol; 2009 May; 26(3):347-53. PubMed ID: 19269580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low membrane lipid phase transition temperature is associated with a high cryotolerance of Lactobacillus delbrueckii subspecies bulgaricus CFL1.
    Gautier J; Passot S; Pénicaud C; Guillemin H; Cenard S; Lieben P; Fonseca F
    J Dairy Sci; 2013 Sep; 96(9):5591-602. PubMed ID: 23810590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of growth temperature and agar versus liquid media on freeze-thaw tolerance of Yersinia enterocolitica.
    Azizoglu RO; Kathariou S
    Foodborne Pathog Dis; 2010 Sep; 7(9):1125-8. PubMed ID: 20528173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of a Spirulina platensis biomass on the microflora of fermented ABT milks during storage (R1).
    Varga L; Szigeti J; Kovács R; Földes T; Buti S
    J Dairy Sci; 2002 May; 85(5):1031-8. PubMed ID: 12086036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implications of modifying membrane fatty acid composition on membrane oxidation, integrity, and storage viability of freeze-dried probiotic, Lactobacillus acidophilus La-5.
    Hansen ML; Petersen MA; Risbo J; Hümmer M; Clausen A
    Biotechnol Prog; 2015; 31(3):799-807. PubMed ID: 25823709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.