These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

4844 related articles for article (PubMed ID: 15592017)

  • 1. Molecular insights into prostate cancer progression: the missing link of tumor microenvironment.
    Chung LW; Baseman A; Assikis V; Zhau HE
    J Urol; 2005 Jan; 173(1):10-20. PubMed ID: 15592017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Androgen deprivation induces selective outgrowth of aggressive hormone-refractory prostate cancer clones expressing distinct cellular and molecular properties not present in parental androgen-dependent cancer cells.
    Tso CL; McBride WH; Sun J; Patel B; Tsui KH; Paik SH; Gitlitz B; Caliliw R; van Ophoven A; Wu L; deKernion J; Belldegrun A
    Cancer J; 2000; 6(4):220-33. PubMed ID: 11038142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cotargeting tumor and stroma in a novel chimeric tumor model involving the growth of both human prostate cancer and bone stromal cells.
    Hsieh CL; Gardner TA; Miao L; Balian G; Chung LW
    Cancer Gene Ther; 2004 Feb; 11(2):148-55. PubMed ID: 14695756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human prostate cancer progression models and therapeutic intervention.
    Chung LW; Kao C; Sikes RA; Zhau HE
    Hinyokika Kiyo; 1997 Nov; 43(11):815-20. PubMed ID: 9436028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metastasis suppression: the evolving role of metastasis suppressor genes for regulating cancer cell growth at the secondary site.
    Kauffman EC; Robinson VL; Stadler WM; Sokoloff MH; Rinker-Schaeffer CW
    J Urol; 2003 Mar; 169(3):1122-33. PubMed ID: 12576866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Focal degeneration of basal cells and the resultant auto-immunoreactions: a novel mechanism for prostate tumor progression and invasion.
    Man YG; Gardner WA
    Med Hypotheses; 2008; 70(2):387-408. PubMed ID: 17658698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibroblast and prostate tumor cell cross-talk: fibroblast differentiation, TGF-β, and extracellular matrix down-regulation.
    Coulson-Thomas VJ; Gesteira TF; Coulson-Thomas YM; Vicente CM; Tersariol IL; Nader HB; Toma L
    Exp Cell Res; 2010 Nov; 316(19):3207-26. PubMed ID: 20727350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CLU "in and out": looking for a link.
    Pucci S; Mazzarelli P; Nucci C; Ricci F; Spagnoli LG
    Adv Cancer Res; 2009; 105():93-113. PubMed ID: 19879425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promotion of angiogenesis by ps20 in the differential reactive stroma prostate cancer xenograft model.
    McAlhany SJ; Ressler SJ; Larsen M; Tuxhorn JA; Yang F; Dang TD; Rowley DR
    Cancer Res; 2003 Sep; 63(18):5859-65. PubMed ID: 14522910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor-stroma interactions directing phenotype and progression of epithelial skin tumor cells.
    Mueller MM; Fusenig NE
    Differentiation; 2002 Dec; 70(9-10):486-97. PubMed ID: 12492491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prostate tumor-stroma interaction: molecular mechanisms and opportunities for therapeutic targeting.
    Sung SY; Chung LW
    Differentiation; 2002 Dec; 70(9-10):506-21. PubMed ID: 12492493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathogenesis and treatment of prostate cancer bone metastases: targeting the lethal phenotype.
    Loberg RD; Logothetis CJ; Keller ET; Pienta KJ
    J Clin Oncol; 2005 Nov; 23(32):8232-41. PubMed ID: 16278478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CXCL12/CXCR4 signaling activates Akt-1 and MMP-9 expression in prostate cancer cells: the role of bone microenvironment-associated CXCL12.
    Chinni SR; Sivalogan S; Dong Z; Filho JC; Deng X; Bonfil RD; Cher ML
    Prostate; 2006 Jan; 66(1):32-48. PubMed ID: 16114056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RANKL acts directly on RANK-expressing prostate tumor cells and mediates migration and expression of tumor metastasis genes.
    Armstrong AP; Miller RE; Jones JC; Zhang J; Keller ET; Dougall WC
    Prostate; 2008 Jan; 68(1):92-104. PubMed ID: 18008334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prostate cancer metastasis: role of the host microenvironment in promoting epithelial to mesenchymal transition and increased bone and adrenal gland metastasis.
    Xu J; Wang R; Xie ZH; Odero-Marah V; Pathak S; Multani A; Chung LW; Zhau HE
    Prostate; 2006 Nov; 66(15):1664-73. PubMed ID: 16902972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of stromal-epithelial interaction in normal and malignant growth.
    Chung LW
    Cancer Surv; 1995; 23():33-42. PubMed ID: 7621472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a unique set of genes altered during cell-cell contact in an in vitro model of prostate cancer bone metastasis.
    Wang J; Levenson AS; Satcher RL
    Int J Mol Med; 2006 May; 17(5):849-56. PubMed ID: 16596270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfected neu oncogene induces human prostate cancer metastasis.
    Zhau HY; Zhou J; Symmans WF; Chen BQ; Chang SM; Sikes RA; Chung LW
    Prostate; 1996 Feb; 28(2):73-83. PubMed ID: 8604395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prostate carcinoma bone-stroma interaction and its biologic and therapeutic implications.
    Chung LW
    Cancer; 2003 Feb; 97(3 Suppl):772-8. PubMed ID: 12548574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive stroma in prostate cancer progression.
    Tuxhorn JA; Ayala GE; Rowley DR
    J Urol; 2001 Dec; 166(6):2472-83. PubMed ID: 11696814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 243.