These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Genetic alterations of the transforming growth factor beta receptor genes in pancreatic and biliary adenocarcinomas. Goggins M; Shekher M; Turnacioglu K; Yeo CJ; Hruban RH; Kern SE Cancer Res; 1998 Dec; 58(23):5329-32. PubMed ID: 9850059 [TBL] [Abstract][Full Text] [Related]
26. Decreased Smad4 expression in the transforming growth factor-beta signaling pathway during progression of esophageal squamous cell carcinoma. Fukuchi M; Masuda N; Miyazaki T; Nakajima M; Osawa H; Kato H; Kuwano H Cancer; 2002 Aug; 95(4):737-43. PubMed ID: 12209716 [TBL] [Abstract][Full Text] [Related]
27. DPC4/SMAD4 mediated tumor suppression of colon carcinoma cells is associated with reduced urokinase expression. Schwarte-Waldhoff I; Klein S; Blass-Kampmann S; Hintelmann A; Eilert C; Dreschers S; Kalthoff H; Hahn SA; Schmiegel W Oncogene; 1999 May; 18(20):3152-8. PubMed ID: 10340387 [TBL] [Abstract][Full Text] [Related]
28. Activin type II receptor restoration in ACVR2-deficient colon cancer cells induces transforming growth factor-beta response pathway genes. Deacu E; Mori Y; Sato F; Yin J; Olaru A; Sterian A; Xu Y; Wang S; Schulmann K; Berki A; Kan T; Abraham JM; Meltzer SJ Cancer Res; 2004 Nov; 64(21):7690-6. PubMed ID: 15520171 [TBL] [Abstract][Full Text] [Related]
29. Attenuation of the TGF-beta-Smad signaling pathway in pancreatic tumor cells confers resistance to TGF-beta-induced growth arrest. Nicolás FJ; Hill CS Oncogene; 2003 Jun; 22(24):3698-711. PubMed ID: 12802277 [TBL] [Abstract][Full Text] [Related]
30. Transforming growth factor-beta1 and activin A generate antiproliferative signaling in thyroid cancer cells. Matsuo SE; Leoni SG; Colquhoun A; Kimura ET J Endocrinol; 2006 Jul; 190(1):141-50. PubMed ID: 16837618 [TBL] [Abstract][Full Text] [Related]
31. Proteomic analysis of the TGF-beta signaling pathway in pancreatic carcinoma cells using stable RNA interference to silence Smad4 expression. Imamura T; Kanai F; Kawakami T; Amarsanaa J; Ijichi H; Hoshida Y; Tanaka Y; Ikenoue T; Tateishi K; Kawabe T; Arakawa Y; Miyagishi M; Taira K; Yokosuka O; Omata M Biochem Biophys Res Commun; 2004 May; 318(1):289-96. PubMed ID: 15110786 [TBL] [Abstract][Full Text] [Related]
32. Systematic analysis of the TGF-beta-Smad signaling pathway in gastrointestinal cancer cells. Ijichi H; Ikenoue T; Kato N; Mitsuno Y; Togo G; Kato J; Kanai F; Shiratori Y; Omata M Biochem Biophys Res Commun; 2001 Nov; 289(2):350-7. PubMed ID: 11716479 [TBL] [Abstract][Full Text] [Related]
33. SMAD4 mutations in colorectal cancer probably occur before chromosomal instability, but after divergence of the microsatellite instability pathway. Woodford-Richens KL; Rowan AJ; Gorman P; Halford S; Bicknell DC; Wasan HS; Roylance RR; Bodmer WF; Tomlinson IP Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9719-23. PubMed ID: 11481457 [TBL] [Abstract][Full Text] [Related]
34. Differences in Smad4 expression in human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck squamous cell carcinoma. Báez A; Cantor A; Fonseca S; Marcos-Martinez M; Mathews LA; Muro-Cacho CA; Muñoz-Antonia T Clin Cancer Res; 2005 May; 11(9):3191-7. PubMed ID: 15867212 [TBL] [Abstract][Full Text] [Related]
35. Dissecting the role of TGF-beta type I receptor/ALK5 in pancreatic ductal adenocarcinoma: Smad activation is crucial for both the tumor suppressive and prometastatic function. Schniewind B; Groth S; Sebens Müerköster S; Sipos B; Schäfer H; Kalthoff H; Fändrich F; Ungefroren H Oncogene; 2007 Jul; 26(33):4850-62. PubMed ID: 17297450 [TBL] [Abstract][Full Text] [Related]
37. Sp1 is required for transforming growth factor-beta-induced mesenchymal transition and migration in pancreatic cancer cells. Jungert K; Buck A; von Wichert G; Adler G; König A; Buchholz M; Gress TM; Ellenrieder V Cancer Res; 2007 Feb; 67(4):1563-70. PubMed ID: 17308095 [TBL] [Abstract][Full Text] [Related]
38. Concordant epigenetic silencing of transforming growth factor-beta signaling pathway genes occurs early in breast carcinogenesis. Hinshelwood RA; Huschtscha LI; Melki J; Stirzaker C; Abdipranoto A; Vissel B; Ravasi T; Wells CA; Hume DA; Reddel RR; Clark SJ Cancer Res; 2007 Dec; 67(24):11517-27. PubMed ID: 18089780 [TBL] [Abstract][Full Text] [Related]
39. Dual role of Ski in pancreatic cancer cells: tumor-promoting versus metastasis-suppressive function. Wang P; Chen Z; Meng ZQ; Fan J; Luo JM; Liang W; Lin JH; Zhou ZH; Chen H; Wang K; Shen YH; Xu ZD; Liu LM Carcinogenesis; 2009 Sep; 30(9):1497-506. PubMed ID: 19546161 [TBL] [Abstract][Full Text] [Related]
40. Independent regulation of growth and SMAD-mediated transcription by transforming growth factor beta in human melanoma cells. Rodeck U; Nishiyama T; Mauviel A Cancer Res; 1999 Feb; 59(3):547-50. PubMed ID: 9973198 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]