BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 15592615)

  • 1. Synthesis of the 1,6,8-trioxadispiro[4.1.5.2]tetradec-11-ene ring system present in the spirolide family of shellfish toxins and its conversion into a 1,6,8-trioxadispiro[4.1.5.2]-tetradec-9-en-12-ol via base-induced rearrangement of an epoxide.
    Brimble MA; Furkert DP
    Org Biomol Chem; 2004 Dec; 2(24):3573-83. PubMed ID: 15592615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of the bis-spiroacetal moiety of the shellfish toxins spirolides B and D using an iterative oxidative radical cyclization strategy.
    Meilert K; Brimble MA
    Org Biomol Chem; 2006 Jun; 4(11):2184-92. PubMed ID: 16729128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of the bis-spiroacetal moiety of spirolides B and D.
    Meilert K; Brimble MA
    Org Lett; 2005 Aug; 7(16):3497-500. PubMed ID: 16048326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of the ABC tricyclic fragment of the pectenotoxins via stereocontrolled cyclization of a gamma-hydroxyepoxide appended to the AB spiroacetal unit.
    Halim R; Brimble MA; Merten J
    Org Biomol Chem; 2006 Apr; 4(7):1387-99. PubMed ID: 16557329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radical oxidative cyclization of spiroacetals to bis-spiroacetals: an overview.
    Brimble MA
    Molecules; 2004 May; 9(6):394-404. PubMed ID: 18007440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of the C10-C22 bis-spiroacetal domain of spirolides B and D via iterative oxidative radical cyclization.
    Furkert DP; Brimble MA
    Org Lett; 2002 Oct; 4(21):3655-8. PubMed ID: 12375911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of the ABC fragment of the pectenotoxins.
    Halim R; Brimble MA; Merten J
    Org Lett; 2005 Jun; 7(13):2659-62. PubMed ID: 15957915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spiroimine shellfish poisoning (SSP) and the spirolide family of shellfish toxins: isolation, structure, biological activity and synthesis.
    Guéret SM; Brimble MA
    Nat Prod Rep; 2010 Sep; 27(9):1350-66. PubMed ID: 20585694
    [No Abstract]   [Full Text] [Related]  

  • 9. Synthesis and Herbicidal Activity of [3R,5S,6S]-3-Benzyloxy-5- methoxy-1,7-dioxaspiro[5.5]undecane and [3R,5S,6S]-3-Methoxy-5-benzyloxy-1,7-dioxaspiro[5.5]undecane.
    Brimble MA; Johnston AD; Furneaux RH
    J Org Chem; 1998 Feb; 63(3):471-479. PubMed ID: 11672035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A formal total synthesis of (+)-pinnatoxin A.
    Sakamoto S; Sakazaki H; Hagiwara K; Kamada K; Ishii K; Noda T; Inoue M; Hirama M
    Angew Chem Int Ed Engl; 2004 Dec; 43(47):6505-10. PubMed ID: 15578774
    [No Abstract]   [Full Text] [Related]  

  • 11. Detection and identification of spirolides in norwegian shellfish and plankton.
    Aasen J; MacKinnon SL; LeBlanc P; Walter JA; Hovgaard P; Aune T; Quilliam MA
    Chem Res Toxicol; 2005 Mar; 18(3):509-15. PubMed ID: 15777091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of 27-hydroxy-13-desmethyl spirolide C and 27-oxo-13,19-didesmethyl spirolide C. Further insights into the complex Adriatic Alexandrium ostenfeldii toxin profile.
    Ciminiello P; Dell'aversano C; Iacovo ED; Fattorusso E; Forino M; Grauso L; Tartaglione L; Guerrini F; Pezzolesi L; Pistocchi R
    Toxicon; 2010 Dec; 56(8):1327-33. PubMed ID: 20674583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational synthesis of contra-thermodynamic spiroacetals by reductive cyclizations.
    Takaoka LR; Buckmelter AJ; LaCruz TE; Rychnovsky SD
    J Am Chem Soc; 2005 Jan; 127(2):528-9. PubMed ID: 15643869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of fatty acid ester metabolites of spirolide toxins in mussels from Norway using liquid chromatography/tandem mass spectrometry.
    Aasen JA; Hardstaff W; Aune T; Quilliam MA
    Rapid Commun Mass Spectrom; 2006; 20(10):1531-7. PubMed ID: 16628595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereoselective synthesis of the lituarine tricyclic spiroacetal.
    Robertson J; Meo P; Dallimore JW; Doyle BM; Hoarau C
    Org Lett; 2004 Oct; 6(21):3861-3. PubMed ID: 15469368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a Dispiroketal Spirolide Subclass from Alexandrium ostenfeldii.
    Roach JS; Leblanc P; Lewis NI; Munday R; Quilliam MA; Mackinnon SL
    J Nat Prod; 2009 Jul; 72(7):1237-40. PubMed ID: 19572609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spacer-mediated synthesis of contra-thermodynamic spiroacetals: stereoselective synthesis of C2-symmetric difructose dianhydrides.
    Rubio EM; García-Moreno MI; Balbuena P; Lahoz FJ; Alvarez E; Ortiz Mellet C; García Fernandez JM
    J Org Chem; 2006 Mar; 71(6):2257-66. PubMed ID: 16526771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First total synthesis of (-)-AL-2.
    Miyakoshi N; Mukai C
    Org Lett; 2003 Jun; 5(13):2335-8. PubMed ID: 12816442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Total syntheses of naturally occurring diacetylenic spiroacetal enol ethers.
    Miyakoshi N; Aburano D; Mukai C
    J Org Chem; 2005 Jul; 70(15):6045-52. PubMed ID: 16018702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetrahydropyran formation by rearrangement of an epoxy ester: a model for the biosynthesis of marine polyether toxins.
    Giner JL
    J Org Chem; 2005 Jan; 70(2):721-4. PubMed ID: 15651829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.