These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 15592986)

  • 21. Robotic neurorehabilitation: a computational motor learning perspective.
    Huang VS; Krakauer JW
    J Neuroeng Rehabil; 2009 Feb; 6():5. PubMed ID: 19243614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The use of robots in stroke rehabilitation: A narrative review.
    Weber LM; Stein J
    NeuroRehabilitation; 2018; 43(1):99-110. PubMed ID: 30056437
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Training of reaching in stroke survivors with severe and chronic upper limb paresis using a novel nonrobotic device: a randomized clinical trial.
    Barker RN; Brauer SG; Carson RG
    Stroke; 2008 Jun; 39(6):1800-7. PubMed ID: 18403742
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robot-based hand motor therapy after stroke.
    Takahashi CD; Der-Yeghiaian L; Le V; Motiwala RR; Cramer SC
    Brain; 2008 Feb; 131(Pt 2):425-37. PubMed ID: 18156154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A small-scale robotic manipulandum for motor training in stroke rats.
    Vigaru B; Lambercy O; Graber L; Fluit R; Wespe P; Schubring-Giese M; Luft A; Gassert R
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975349. PubMed ID: 22275553
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robotic technology and physical medicine and rehabilitation.
    Krebs HI
    Eur J Phys Rehabil Med; 2012 Jun; 48(2):319-24. PubMed ID: 22614892
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hybrid robotic systems for upper limb rehabilitation after stroke: A review.
    Resquín F; Cuesta Gómez A; Gonzalez-Vargas J; Brunetti F; Torricelli D; Molina Rueda F; Cano de la Cuerda R; Miangolarra JC; Pons JL
    Med Eng Phys; 2016 Nov; 38(11):1279-1288. PubMed ID: 27692878
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robot-aided intensive training in post-stroke recovery.
    Masiero S; Celia A; Armani M; Rosati G; Tavolato B; Ferraro C; Ortolani M
    Aging Clin Exp Res; 2006 Jun; 18(3):261-5. PubMed ID: 16804374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers.
    Hesse S; Werner C; Pohl M; Rueckriem S; Mehrholz J; Lingnau ML
    Stroke; 2005 Sep; 36(9):1960-6. PubMed ID: 16109908
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stochastic estimation of arm mechanical impedance during robotic stroke rehabilitation.
    Palazzolo JJ; Ferraro M; Krebs HI; Lynch D; Volpe BT; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):94-103. PubMed ID: 17436881
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overview of clinical trials with MIT-MANUS: a robot-aided neuro-rehabilitation facility.
    Krebs HI; Hogan N; Volpe BT; Aisen ML; Edelstein L; Diels C
    Technol Health Care; 1999; 7(6):419-23. PubMed ID: 10665675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrating proprioceptive assessment with proprioceptive training of stroke patients.
    Squeri V; Zenzeri J; Morasso P; Basteris A
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975500. PubMed ID: 22275696
    [TBL] [Abstract][Full Text] [Related]  

  • 33. What's new in new technologies for upper extremity rehabilitation?
    Brochard S; Robertson J; Médée B; Rémy-Néris O
    Curr Opin Neurol; 2010 Dec; 23(6):683-7. PubMed ID: 20852420
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An assessment of robot-assisted bimanual movements on upper limb motor coordination following stroke.
    Lewis GN; Perreault EJ
    IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):595-604. PubMed ID: 19666342
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving robotics for neurorehabilitation: enhancing engagement, performance, and learning with auditory feedback.
    Rosati G; Oscari F; Reinkensmeyer DJ; Secoli R; Avanzini F; Spagnol S; Masiero S
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975373. PubMed ID: 22275577
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Upper and lower extremity robotic devices for rehabilitation and for studying motor control.
    Hesse S; Schmidt H; Werner C; Bardeleben A
    Curr Opin Neurol; 2003 Dec; 16(6):705-10. PubMed ID: 14624080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Poststroke upper extremity rehabilitation: a review of robotic systems and clinical results.
    Brewer BR; McDowell SK; Worthen-Chaudhari LC
    Top Stroke Rehabil; 2007; 14(6):22-44. PubMed ID: 18174114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robotic devices and brain-machine interfaces for hand rehabilitation post-stroke.
    McConnell AC; Moioli RC; Brasil FL; Vallejo M; Corne DW; Vargas PA; Stokes AA
    J Rehabil Med; 2017 Jun; 49(6):449-460. PubMed ID: 28597018
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advances in the understanding and treatment of stroke impairment using robotic devices.
    Hidler J; Nichols D; Pelliccio M; Brady K
    Top Stroke Rehabil; 2005; 12(2):22-35. PubMed ID: 15940582
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Socially assistive robotics for stroke and mild TBI rehabilitation.
    Matarić M; Tapus A; Winstein C; Eriksson J
    Stud Health Technol Inform; 2009; 145():249-62. PubMed ID: 19592798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.