These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 15593075)

  • 1. Influence of organic carbon on reductive dechlorination of thiobencarb in California rice field soils.
    Schmelzer KR; Johnson CS; Viant MR; Williams JF; Tjeerdema RS
    Pest Manag Sci; 2005 Jan; 61(1):68-74. PubMed ID: 15593075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of phosphate and copper on reductive dechlorination of thiobencarb in California rice field soils.
    Gunasekara AS; Tenbrook PL; Palumbo AJ; Johnson CS; Tjeerdema RS
    J Agric Food Chem; 2005 Dec; 53(26):10113-9. PubMed ID: 16366703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavior of simetryn and thiobencarb in the plough zone of rice fields.
    Phong TK; Nhung DT; Motobayashi T; Watanabe H
    Bull Environ Contam Toxicol; 2009 Dec; 83(6):794-8. PubMed ID: 19585064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field dissipation and environmental hazard assessment of clomazone, molinate, and thiobencarb in Australian rice culture.
    Quayle WC; Oliver DP; Zrna S
    J Agric Food Chem; 2006 Sep; 54(19):7213-20. PubMed ID: 16968085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of degradation and adsorption-desorption isotherms of thiobencarb and oxadiargyl in calcareous paddy fields.
    Mahmoudi M; Rahnemaie R; Es-haghi A; Malakouti MJ
    Chemosphere; 2013 May; 91(7):1009-17. PubMed ID: 23461836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of California rice field soils susceptible to delayed phytotoxicity syndrome.
    TenBrook PL; Viant MR; Holstege DM; Williams JF; Tjeerdema RS
    Bull Environ Contam Toxicol; 2004 Sep; 73(3):448-56. PubMed ID: 15386164
    [No Abstract]   [Full Text] [Related]  

  • 7. Environmental fate of SYP-1924 residues in rice field.
    Zhu X; Jia C; He M; Yu P; Chen L; Zhao E
    Bull Environ Contam Toxicol; 2010 Jun; 84(6):775-8. PubMed ID: 20449722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hexachlorobenzene dechlorination as affected by organic fertilizer and urea applications in two rice planted paddy soils in a pot experiment.
    Liu CY; Jiang X; Yang XL; Song Y
    Sci Total Environ; 2010 Jan; 408(4):958-64. PubMed ID: 19889446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental fate of the herbicide molinate in a rice-paddy-soil lysimeter.
    Park BJ; Kyung KS; Choi JH; Im GJ; Kim IS; Shim JH
    Bull Environ Contam Toxicol; 2005 Nov; 75(5):937-44. PubMed ID: 16400582
    [No Abstract]   [Full Text] [Related]  

  • 10. The mobility of thiobencarb and fipronil in two flooded rice-growing soils.
    Doran G; Eberbach P; Helliwell S
    J Environ Sci Health B; 2008 Aug; 43(6):490-7. PubMed ID: 18665985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative toxicity of thiobencarb and deschlorothiobencarb to rice (Oryza sativa).
    Palumbo AJ; TenBrook PL; Phipps A; Tjeerdema RS
    Bull Environ Contam Toxicol; 2004 Jul; 73(1):213-8. PubMed ID: 15386094
    [No Abstract]   [Full Text] [Related]  

  • 12. Sorption of acetochlor, atrazine, 2,4-D, chlorotoluron, MCPA, and trifluralin in six soils from Slovakia.
    Hiller E; Krascsenits Z; Cernanský S
    Bull Environ Contam Toxicol; 2008 May; 80(5):412-6. PubMed ID: 18401535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental fate of rice pesticides in California.
    Mabury SA; Cox JS; Crosby DG
    Rev Environ Contam Toxicol; 1996; 147():71-117. PubMed ID: 8776986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of extractable residue, bound residue and mineralization of a novel herbicide, ZJ0273, in aerobic soils.
    Wang H; Ye Q; Yue L; Yu Z; Han A; Yang Z; Lu L
    Chemosphere; 2009 Aug; 76(8):1036-40. PubMed ID: 19481777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental fate of herbicides trifluralin, metazachlor, metamitron and sulcotrione compared with that of glyphosate, a substitute broad spectrum herbicide for different glyphosate-resistant crops.
    Mamy L; Barriuso E; Gabrielle B
    Pest Manag Sci; 2005 Sep; 61(9):905-16. PubMed ID: 16041722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contact-time-dependent atrazine residue formation in surface soils.
    Lesan HM; Bhandari A
    Water Res; 2004 Dec; 38(20):4435-45. PubMed ID: 15556218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonal losses of dissolved organic carbon and total dissolved solids from rice production systems in northern California.
    Ruark MD; Linquist BA; Six J; van Kessel C; Greer CA; Mutters RG; Hill JE
    J Environ Qual; 2010; 39(1):304-13. PubMed ID: 20048318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption and degradation of four acidic herbicides in soils from southern Spain.
    Villaverde J; Kah M; Brown CD
    Pest Manag Sci; 2008 Jul; 64(7):703-10. PubMed ID: 18283714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative water management for controlling simetryn and thiobencarb runoff from paddy fields.
    Phong TK; Nguyen MH; Komany S; Vu SH; Watanabe H
    Bull Environ Contam Toxicol; 2006 Sep; 77(3):375-82. PubMed ID: 17033864
    [No Abstract]   [Full Text] [Related]  

  • 20. Plant availability and phytotoxicity of soil bound residues of herbicide ZJ0273, a novel acetolactate synthase potential inhibitor.
    Han A; Yue L; Li Z; Wang H; Wang Y; Ye Q; Lu L; Gan J
    Chemosphere; 2009 Nov; 77(7):955-61. PubMed ID: 19732936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.