BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 15593270)

  • 1. Fast robust subject-independent magnetoencephalographic source localization using an artificial neural network.
    Jun SC; Pearlmutter BA
    Hum Brain Mapp; 2005 Jan; 24(1):21-34. PubMed ID: 15593270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast accurate MEG source localization using a multilayer perceptron trained with real brain noise.
    Jun SC; Pearlmutter BA; Nolte G
    Phys Med Biol; 2002 Jul; 47(14):2547-60. PubMed ID: 12171339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MEG source localization using an MLP with a distributed output representation.
    Jun SC; Pearlmutter BA; Nolte G
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):786-9. PubMed ID: 12814246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artifact and head movement compensation in MEG.
    Medvedovsky M; Taulu S; Bikmullina R; Paetau R
    Neurol Neurophysiol Neurosci; 2007 Oct; ():4. PubMed ID: 18066426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment and elimination of the effects of head movement on MEG resting-state measures of oscillatory brain activity.
    Messaritaki E; Koelewijn L; Dima DC; Williams GM; Perry G; Singh KD
    Neuroimage; 2017 Oct; 159():302-324. PubMed ID: 28735011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Error bounds for EEG and MEG dipole source localization.
    Mosher JC; Spencer ME; Leahy RM; Lewis PS
    Electroencephalogr Clin Neurophysiol; 1993 May; 86(5):303-21. PubMed ID: 7685264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MEG recordings of DC fields using the signal space separation method (SSS).
    Taulu S; Simola J; Kajola M
    Neurol Clin Neurophysiol; 2004 Nov; 2004():35. PubMed ID: 16012635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetoencephalography is feasible for infant assessment of auditory discrimination.
    Cheour M; Imada T; Taulu S; Ahonen A; Salonen J; Kuhl P
    Exp Neurol; 2004 Nov; 190 Suppl 1():S44-51. PubMed ID: 15498541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-scalp MEG sensor localization using magnetic dipole-like coils: A method for highly accurate co-registration.
    Pfeiffer C; Ruffieux S; Andersen LM; Kalabukhov A; Winkler D; Oostenveld R; Lundqvist D; Schneiderman JF
    Neuroimage; 2020 May; 212():116686. PubMed ID: 32119981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implanted medical devices or other strong sources of interference are not barriers to magnetoencephalographic recordings in epilepsy patients.
    Jin K; Alexopoulos AV; Mosher JC; Burgess RC
    Clin Neurophysiol; 2013 Jul; 124(7):1283-9. PubMed ID: 23664658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Realignment of magnetoencephalographic data for group analysis in the sensor domain.
    Ross B; Charron RE; Jamali S
    J Clin Neurophysiol; 2011 Apr; 28(2):190-201. PubMed ID: 21399522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localizing on-scalp MEG sensors using an array of magnetic dipole coils.
    Pfeiffer C; Andersen LM; Lundqvist D; Hämäläinen M; Schneiderman JF; Oostenveld R
    PLoS One; 2018; 13(5):e0191111. PubMed ID: 29746486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ocular and cardiac artifact rejection for real-time analysis in MEG.
    Breuer L; Dammers J; Roberts TP; Shah NJ
    J Neurosci Methods; 2014 Aug; 233():105-14. PubMed ID: 24954539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localisation of epileptic foci with multichannel magnetoencephalography, MEG.
    Knutsson E; Gransberg L
    Acta Neurochir Suppl; 1995; 64():74-8. PubMed ID: 8748588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual MEG Helmet: Computer Simulation of an Approach to Neuromagnetic Field Sampling.
    Medvedovsky M; Nenonen J; Koptelova A; Butorina A; Paetau R; Mäkelä JP; Ahonen A; Simola J; Gazit T; Taulu S
    IEEE J Biomed Health Inform; 2016 Mar; 20(2):539-48. PubMed ID: 25616085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of metallic artifact filtering on MEG signals for source localization during interictal epileptiform activity.
    Migliorelli C; Alonso JF; Romero S; Mañanas MA; Nowak R; Russi A
    J Neural Eng; 2016 Apr; 13(2):026029. PubMed ID: 26934426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spike separation from EEG/MEG data using morphological filter and wavelet transform.
    Jia W; Sclabassi RJ; Pon LS; Scheuer ML; Sun M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6137-40. PubMed ID: 17946360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Convolutional Neural Networks for Feature-Less Automatic Classification of Independent Components in Multi-Channel Electrophysiological Brain Recordings.
    Croce P; Zappasodi F; Marzetti L; Merla A; Pizzella V; Chiarelli AM
    IEEE Trans Biomed Eng; 2019 Aug; 66(8):2372-2380. PubMed ID: 30582523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulation studies of EEG and MEG localization accuracy.
    Liu AK; Dale AM; Belliveau JW
    Hum Brain Mapp; 2002 May; 16(1):47-62. PubMed ID: 11870926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ICA-based artifact correction improves spatial localization of adaptive spatial filters in MEG.
    Fatima Z; Quraan MA; Kovacevic N; McIntosh AR
    Neuroimage; 2013 Sep; 78():284-94. PubMed ID: 23603349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.