These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 15595676)
41. Separation and identification of glycoforms by capillary electrophoresis with electrospray ionization mass spectrometric detection. Zamfir AD; Flangea C; Serb A; Zagrean AM; Rizzi AM; Sisu E Methods Mol Biol; 2013; 951():145-69. PubMed ID: 23296530 [TBL] [Abstract][Full Text] [Related]
42. Characterisation of a new online nanoLC-CZE-MS platform and application for the glycosylation profiling of alpha-1-acid glycoprotein. Stolz A; Neusüß C Anal Bioanal Chem; 2022 Feb; 414(5):1745-1757. PubMed ID: 34881393 [TBL] [Abstract][Full Text] [Related]
43. Intact protein analysis in the biopharmaceutical field. Staub A; Guillarme D; Schappler J; Veuthey JL; Rudaz S J Pharm Biomed Anal; 2011 Jun; 55(4):810-22. PubMed ID: 21334842 [TBL] [Abstract][Full Text] [Related]
44. Monitoring the kinetics of glycoprotein synthesis and secretion in the filamentous fungus Trichoderma reesei: cellobiohydrolase I (CBHI) as a model protein. Pakula TM; Uusitalo J; Saloheimo M; Salonen K; Aarts RJ; Penttilä M Microbiology (Reading); 2000 Jan; 146 ( Pt 1)():223-232. PubMed ID: 10658668 [TBL] [Abstract][Full Text] [Related]
45. Purification and characteristics of xyloglucanase and five other cellulolytic enzymes from Trichoderma reesei QM9414. Qi H; Bai F; Liu A Biochemistry (Mosc); 2013 Apr; 78(4):424-30. PubMed ID: 23590446 [TBL] [Abstract][Full Text] [Related]
46. Intact mass analysis of monoclonal antibodies by capillary electrophoresis-Mass spectrometry. Han M; Rock BM; Pearson JT; Rock DA J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Feb; 1011():24-32. PubMed ID: 26751590 [TBL] [Abstract][Full Text] [Related]
47. Development of the cellulolytic fungus Trichoderma reesei strain with enhanced beta-glucosidase and filter paper activity using strong artificial cellobiohydrolase 1 promoter. Zhang J; Zhong Y; Zhao X; Wang T Bioresour Technol; 2010 Dec; 101(24):9815-8. PubMed ID: 20708927 [TBL] [Abstract][Full Text] [Related]
48. Electrophoresis combined with novel mass spectrometry techniques: powerful tools for the analysis of proteins and proteomes. Figeys D; Gygi SP; Zhang Y; Watts J; Gu M; Aebersold R Electrophoresis; 1998 Jul; 19(10):1811-8. PubMed ID: 9719564 [TBL] [Abstract][Full Text] [Related]
49. Mutational effects on the catalytic mechanism of cellobiohydrolase I from Trichoderma reesei. Yan S; Li T; Yao L J Phys Chem B; 2011 May; 115(17):4982-9. PubMed ID: 21476560 [TBL] [Abstract][Full Text] [Related]
50. Glycoform characterization of erythropoietin combining glycan and intact protein analysis by capillary electrophoresis - electrospray - time-of-flight mass spectrometry. Balaguer E; Demelbauer U; Pelzing M; Sanz-Nebot V; Barbosa J; Neusüss C Electrophoresis; 2006 Jul; 27(13):2638-50. PubMed ID: 16817164 [TBL] [Abstract][Full Text] [Related]
51. Visualization of cellobiohydrolase I from Trichoderma reesei moving on crystalline cellulose using high-speed atomic force microscopy. Igarashi K; Uchihashi T; Koivula A; Wada M; Kimura S; Penttilä M; Ando T; Samejima M Methods Enzymol; 2012; 510():169-82. PubMed ID: 22608726 [TBL] [Abstract][Full Text] [Related]
52. Monoclonal antibodies biosimilarity assessment using transient isotachophoresis capillary zone electrophoresis-tandem mass spectrometry. Gahoual R; Biacchi M; Chicher J; Kuhn L; Hammann P; Beck A; Leize-Wagner E; François YN MAbs; 2014; 6(6):1464-73. PubMed ID: 25484058 [TBL] [Abstract][Full Text] [Related]
53. The cellulose-binding domain of cellobiohydrolase Cel7A from Trichoderma reesei is also a thermostabilizing domain. Hall M; Rubin J; Behrens SH; Bommarius AS J Biotechnol; 2011 Oct; 155(4):370-6. PubMed ID: 21807036 [TBL] [Abstract][Full Text] [Related]
54. Characterization of glycosylation sites for a recombinant IgG1 monoclonal antibody and a CTLA4-Ig fusion protein by liquid chromatography-mass spectrometry peptide mapping. Bongers J; Devincentis J; Fu J; Huang P; Kirkley DH; Leister K; Liu P; Ludwig R; Rumney K; Tao L; Wu W; Russell RJ J Chromatogr A; 2011 Nov; 1218(45):8140-9. PubMed ID: 21978954 [TBL] [Abstract][Full Text] [Related]
55. Improved tryptic digestion assisted with an acid-labile anionic surfactant for the separation and characterization of glycopeptide glycoforms of a proteolytic-resistant glycoprotein by capillary electrophoresis time-of-flight mass spectrometry. Barroso A; Giménez E; Benavente F; Barbosa J; Sanz-Nebot V Electrophoresis; 2016 Apr; 37(7-8):987-97. PubMed ID: 26331950 [TBL] [Abstract][Full Text] [Related]
56. New insights in Rapana venosa hemocyanin N-glycosylation resulting from on-line mass spectrometric analyses. Sandra K; Dolashka-Angelova P; Devreese B; Van Beeumen J Glycobiology; 2007 Feb; 17(2):141-56. PubMed ID: 17068122 [TBL] [Abstract][Full Text] [Related]
58. Methods in enzymology: O-glycosylation of proteins. Peter-Katalinić J Methods Enzymol; 2005; 405():139-71. PubMed ID: 16413314 [TBL] [Abstract][Full Text] [Related]
59. Heterologous expression of codon optimized Trichoderma reesei Cel6A in Pichia pastoris. Sun FF; Bai R; Yang H; Wang F; He J; Wang C; Tu M Enzyme Microb Technol; 2016 Oct; 92():107-16. PubMed ID: 27542751 [TBL] [Abstract][Full Text] [Related]
60. Identification of amino acids responsible for processivity in a Family 1 carbohydrate-binding module from a fungal cellulase. Beckham GT; Matthews JF; Bomble YJ; Bu L; Adney WS; Himmel ME; Nimlos MR; Crowley MF J Phys Chem B; 2010 Jan; 114(3):1447-53. PubMed ID: 20050714 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]