These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 15595729)

  • 1. Titania and alumina sol-gel-derived microfluidics enzymatic-reactors for peptide mapping: design, characterization, and performance.
    Wu H; Tian Y; Liu B; Lu H; Wang X; Zhai J; Jin H; Yang P; Xu Y; Wang H
    J Proteome Res; 2004; 3(6):1201-9. PubMed ID: 15595729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic enzymatic-reactors for peptide mapping: strategy, characterization, and performance.
    Wu H; Zhai J; Tian Y; Lu H; Wang X; Jia W; Liu B; Yang P; Xu Y; Wang H
    Lab Chip; 2004 Dec; 4(6):588-97. PubMed ID: 15570370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an enzymatic reactor applying spontaneously adsorbed trypsin on the surface of a PDMS microfluidic device.
    Kecskemeti A; Bako J; Csarnovics I; Csosz E; Gaspar A
    Anal Bioanal Chem; 2017 May; 409(14):3573-3585. PubMed ID: 28299417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of a packed bead immobilized trypsin reactor integrated into a PDMS microfluidic chip for rapid protein digestion.
    Kecskemeti A; Gaspar A
    Talanta; 2017 May; 166():275-283. PubMed ID: 28213235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic microreactor-on-a-chip: protein mapping using trypsin immobilized on porous polymer monoliths molded in channels of microfluidic devices.
    Peterson DS; Rohr T; Svec F; Fréchet JM
    Anal Chem; 2002 Aug; 74(16):4081-8. PubMed ID: 12199578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creation of an on-chip enzyme reactor by encapsulating trypsin in sol-gel on a plastic microchip.
    Sakai-Kato K; Kato M; Toyo'oka T
    Anal Chem; 2003 Feb; 75(3):388-93. PubMed ID: 12585462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of a polystyrene microfluidic chip coupled to electrospray ionization mass spectrometry for protein analysis.
    Hu X; Dong Y; He Q; Chen H; Zhu Z
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 May; 990():96-103. PubMed ID: 25864010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A flow-through nanoporous alumina trypsin bioreactor for mass spectrometry peptide fingerprinting.
    Kjellander M; Billinger E; Ramachandraiah H; Boman M; Bergström Lind S; Johansson G
    J Proteomics; 2018 Feb; 172():165-172. PubMed ID: 28942014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput peptide mass mapping using a microdevice containing trypsin immobilized on a porous polymer monolith coupled to MALDI TOF and ESI TOF mass spectrometers.
    Peterson DS; Rohr T; Svec F; Fréchet JM
    J Proteome Res; 2002; 1(6):563-8. PubMed ID: 12645625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of proteolysis through the silica-gel-derived microfluidic reactor.
    Liu Y; Qu H; Xue Y; Wu Z; Yang P; Liu B
    Proteomics; 2007 May; 7(9):1373-8. PubMed ID: 17407177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monolithic bioreactor immobilizing trypsin for high-throughput analysis.
    Kato M; Inuzuka K; Sakai-Kato K; Toyo'oka T
    Anal Chem; 2005 Mar; 77(6):1813-8. PubMed ID: 15762590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of trypsin on poly(urea-formaldehyde)-coated fiberglass cores in microchip for highly efficient proteolysis.
    Fan H; Bao H; Zhang L; Chen G
    Proteomics; 2011 Aug; 11(16):3420-3. PubMed ID: 21751341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(dimethylsiloxane)-based microfluidic device with electrospray ionization-mass spectrometry interface for protein identification.
    Sung WC; Huang SY; Liao PC; Lee GB; Li CW; Chen SH
    Electrophoresis; 2003 Nov; 24(21):3648-54. PubMed ID: 14613189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of immobilized enzyme reactors with pillar arrays into polydimethylsiloxane microchip.
    Nagy C; Kecskemeti A; Gaspar A
    Anal Chim Acta; 2020 Apr; 1108():70-78. PubMed ID: 32222246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable sol-gel microstructured and microfluidic networks for protein patterning.
    Kim YD; Park CB; Clark DS
    Biotechnol Bioeng; 2001 Jun; 73(5):331-7. PubMed ID: 11320503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of trypsin via graphene oxide-silica composite for efficient microchip proteolysis.
    Bao H; Zhang L; Chen G
    J Chromatogr A; 2013 Oct; 1310():74-81. PubMed ID: 23998335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance enhanced UV/vis spectroscopic microfluidic sensor for ascorbic acid quantification in human blood.
    Bi H; Duarte CM; Brito M; Vilas-Boas V; Cardoso S; Freitas P
    Biosens Bioelectron; 2016 Nov; 85():568-572. PubMed ID: 27236140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of trypsin on silica-coated fiberglass core in microchip for highly efficient proteolysis.
    Liu T; Wang S; Chen G
    Talanta; 2009 Mar; 77(5):1767-73. PubMed ID: 19159796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of high efficiency and low carry-over immobilized enzymatic reactor with methacrylic acid-silica hybrid monolith as matrix for on-line protein digestion.
    Yuan H; Zhang L; Zhang Y
    J Chromatogr A; 2014 Dec; 1371():48-57. PubMed ID: 25456586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable nonpolar solvent droplet generation using a poly(dimethylsiloxane) microfluidic channel coated with poly-p-xylylene for a nanoparticle growth.
    Lim H; Moon S
    Biomed Microdevices; 2015 Aug; 17(4):70. PubMed ID: 26112614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.