BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 15595805)

  • 21. Solvothermal-induced phase transition and visible photocatalytic activity of nitrogen-doped titania.
    Liu J; Qin W; Zuo S; Yu Y; Hao Z
    J Hazard Mater; 2009 Apr; 163(1):273-8. PubMed ID: 18674860
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of material properties on sedimentation and aggregation of titanium dioxide nanoparticles of anatase and rutile in the aqueous phase.
    Liu X; Chen G; Su C
    J Colloid Interface Sci; 2011 Nov; 363(1):84-91. PubMed ID: 21803366
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of gas flow rates on the anatase-rutile transformation temperature of nanocrystalline TiO2 synthesised by chemical vapour synthesis.
    Ahmad MI; Bhattacharya SS; Fasel C; Hahn H
    J Nanosci Nanotechnol; 2009 Sep; 9(9):5572-7. PubMed ID: 19928267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Study on the anatase to rutile phase transformation and controlled synthesis of rutile nanocrystals with the assistance of ionic liquid.
    Ding K; Miao Z; Hu B; An G; Sun Z; Han B; Liu Z
    Langmuir; 2010 Jun; 26(12):10294-302. PubMed ID: 20426393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of heat treatment on morphological changes of nano-structured titanium oxide formed by anodic oxidation of titanium in acidic fluoride solution.
    Neupane MP; Park IS; Lee MH; Bae TS; Watari F
    Biomed Mater Eng; 2009; 19(1):77-83. PubMed ID: 19458449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of crystal phase in determining photocatalytic activity of nitrogen doped TiO2.
    Liu G; Wang X; Chen Z; Cheng HM; Lu GQ
    J Colloid Interface Sci; 2009 Jan; 329(2):331-8. PubMed ID: 18848707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low temperature N,N-dimethylformamide-assisted synthesis and characterization of anatase-rutile biphasic nanostructured titania.
    Estruga M; Domingo C; Domènech X; Ayllón JA
    Nanotechnology; 2009 Mar; 20(12):125604. PubMed ID: 19420473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electronic structure and photoabsorption of Ti
    Wen B; Hao Q; Yin WJ; Zhang L; Wang Z; Wang T; Zhou C; Selloni A; Yang X; Liu LM
    Phys Chem Chem Phys; 2018 Jul; 20(26):17658-17665. PubMed ID: 29931014
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced activity of bismuth-compounded TiO(2) nanoparticles for photocatalytically degrading rhodamine B solution.
    Wang J; Jing L; Xue L; Qu Y; Fu H
    J Hazard Mater; 2008 Dec; 160(1):208-12. PubMed ID: 18400384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of controllable crystalline titania and study on the photocatalytic properties.
    Yan M; Chen F; Zhang J; Anpo M
    J Phys Chem B; 2005 May; 109(18):8673-8. PubMed ID: 16852027
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photocatalytic activity of a surface-modified anatase and rutile titania nanoparticle mixture.
    Kim S; Ehrman SH
    J Colloid Interface Sci; 2009 Oct; 338(1):304-7. PubMed ID: 19604514
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoluminescence of anatase and rutile TiO2 particles.
    Abazović ND; Comor MI; Dramićanin MD; Jovanović DJ; Ahrenkiel SP; Nedeljković JM
    J Phys Chem B; 2006 Dec; 110(50):25366-70. PubMed ID: 17165983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photocatalytic activity of rutile-anatase coupled TiO2 particles prepared by a dissolution-reprecipitation method.
    Kawahara T; Ozawa T; Iwasaki M; Tada H; Ito S
    J Colloid Interface Sci; 2003 Nov; 267(2):377-81. PubMed ID: 14583215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chlorate ion mediated rutile to anatase reverse phase transformation in the TiO2 nanosystem.
    Bhosale R; Hyam R; Dhanya P; Ogale S
    Dalton Trans; 2011 Nov; 40(43):11374-7. PubMed ID: 21952868
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Templated homoepitaxial growth with atomic layer deposition of single-crystal anatase (101) and rutile (110) TiO2.
    Kraus TJ; Nepomnyashchii AB; Parkinson BA
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):9946-9. PubMed ID: 24927228
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An environmentally sensitive phase map of titania nanocrystals.
    Barnard AS; Xu H
    ACS Nano; 2008 Nov; 2(11):2237-42. PubMed ID: 19206388
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption configurations and energetics of BClx (x=0-3) on TiO2 anatase (101) and rutile (110) surfaces.
    Chang JG; Wang J; Lin MC
    J Phys Chem A; 2007 Jul; 111(29):6746-54. PubMed ID: 17447738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation, characterization and photocatalytic activities of holmium-doped titanium dioxide nanoparticles.
    Shi JW; Zheng JT; Wu P
    J Hazard Mater; 2009 Jan; 161(1):416-22. PubMed ID: 18462878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of nano titania particles embedded in mesoporous SBA-15: characterization and photocatalytic activity.
    Yang J; Zhang J; Zhu L; Chen S; Zhang Y; Tang Y; Zhu Y; Li Y
    J Hazard Mater; 2006 Sep; 137(2):952-8. PubMed ID: 16621269
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of polycrystalline structure of TiO2 particles on the light scattering efficiency.
    Nelson K; Deng Y
    J Colloid Interface Sci; 2008 Mar; 319(1):130-9. PubMed ID: 18093611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.