These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 15595857)
1. Femtomole mixer for microsecond kinetic studies of protein folding. Hertzog DE; Michalet X; Jäger M; Kong X; Santiago JG; Weiss S; Bakajin O Anal Chem; 2004 Dec; 76(24):7169-78. PubMed ID: 15595857 [TBL] [Abstract][Full Text] [Related]
2. Improvements in mixing time and mixing uniformity in devices designed for studies of protein folding kinetics. Yao S; Bakajin O Anal Chem; 2007 Aug; 79(15):5753-9. PubMed ID: 17583912 [TBL] [Abstract][Full Text] [Related]
3. Optimization of a microfluidic mixer for studying protein folding kinetics. Hertzog DE; Ivorra B; Mohammadi B; Bakajin O; Santiago JG Anal Chem; 2006 Jul; 78(13):4299-306. PubMed ID: 16808436 [TBL] [Abstract][Full Text] [Related]
4. Microsecond protein folding events revealed by time-resolved fluorescence resonance energy transfer in a microfluidic mixer. Jiang L; Zeng Y; Sun Q; Sun Y; Guo Z; Qu JY; Yao S Anal Chem; 2015 Jun; 87(11):5589-95. PubMed ID: 25938953 [TBL] [Abstract][Full Text] [Related]
5. Microfluidic mixer designed for performing single-molecule kinetics with confocal detection on timescales from milliseconds to minutes. Wunderlich B; Nettels D; Benke S; Clark J; Weidner S; Hofmann H; Pfeil SH; Schuler B Nat Protoc; 2013 Aug; 8(8):1459-74. PubMed ID: 23845960 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic mixers for the investigation of rapid protein folding kinetics using synchrotron radiation circular dichroism spectroscopy. Kane AS; Hoffmann A; Baumgärtel P; Seckler R; Reichardt G; Horsley DA; Schuler B; Bakajin O Anal Chem; 2008 Dec; 80(24):9534-41. PubMed ID: 19072266 [TBL] [Abstract][Full Text] [Related]
7. Single-molecule measurement of protein folding kinetics. Lipman EA; Schuler B; Bakajin O; Eaton WA Science; 2003 Aug; 301(5637):1233-5. PubMed ID: 12947198 [TBL] [Abstract][Full Text] [Related]
8. A Method for Extracting the Free Energy Surface and Conformational Dynamics of Fast-Folding Proteins from Single Molecule Photon Trajectories. Ramanathan R; Muñoz V J Phys Chem B; 2015 Jun; 119(25):7944-56. PubMed ID: 25988351 [TBL] [Abstract][Full Text] [Related]
9. Protein hydrophobic collapse and early folding steps observed in a microfluidic mixer. Lapidus LJ; Yao S; McGarrity KS; Hertzog DE; Tubman E; Bakajin O Biophys J; 2007 Jul; 93(1):218-24. PubMed ID: 17416618 [TBL] [Abstract][Full Text] [Related]
10. Slow unfolded-state structuring in Acyl-CoA binding protein folding revealed by simulation and experiment. Voelz VA; Jäger M; Yao S; Chen Y; Zhu L; Waldauer SA; Bowman GR; Friedrichs M; Bakajin O; Lapidus LJ; Weiss S; Pande VS J Am Chem Soc; 2012 Aug; 134(30):12565-77. PubMed ID: 22747188 [TBL] [Abstract][Full Text] [Related]
11. A novel microfluidic mixer based on dual-hydrodynamic focusing for interrogating the kinetics of DNA-protein interaction. Li Y; Xu F; Liu C; Xu Y; Feng X; Liu BF Analyst; 2013 Aug; 138(16):4475-82. PubMed ID: 23785706 [TBL] [Abstract][Full Text] [Related]
12. Achieving uniform mixing in a microfluidic device: hydrodynamic focusing prior to mixing. Park HY; Qiu X; Rhoades E; Korlach J; Kwok LW; Zipfel WR; Webb WW; Pollack L Anal Chem; 2006 Jul; 78(13):4465-73. PubMed ID: 16808455 [TBL] [Abstract][Full Text] [Related]
13. Nonequilibrium single molecule protein folding in a coaxial mixer. Hamadani KM; Weiss S Biophys J; 2008 Jul; 95(1):352-65. PubMed ID: 18339751 [TBL] [Abstract][Full Text] [Related]
14. Two-dimensional fluorescence resonance energy transfer as a probe for protein folding: a theoretical study. Ting CL; Makarov DE J Chem Phys; 2008 Mar; 128(11):115102. PubMed ID: 18361617 [TBL] [Abstract][Full Text] [Related]
15. Direct observation of barrier-limited folding of BBL by single-molecule fluorescence resonance energy transfer. Huang F; Ying L; Fersht AR Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16239-44. PubMed ID: 19805287 [TBL] [Abstract][Full Text] [Related]
16. Single-molecule FRET and linear dichroism studies of DNA breathing and helicase binding at replication fork junctions. Phelps C; Lee W; Jose D; von Hippel PH; Marcus AH Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17320-5. PubMed ID: 24062430 [TBL] [Abstract][Full Text] [Related]
17. Förster resonance energy transfer: Role of diffusion of fluorophore orientation and separation in observed shifts of FRET efficiency. Wallace B; Atzberger PJ PLoS One; 2017; 12(5):e0177122. PubMed ID: 28542211 [TBL] [Abstract][Full Text] [Related]
18. Combining Rapid Microfluidic Mixing and Three-Color Single-Molecule FRET for Probing the Kinetics of Protein Conformational Changes. Benke S; Holla A; Wunderlich B; Soranno A; Nettels D; Schuler B J Phys Chem B; 2021 Jun; 125(24):6617-6628. PubMed ID: 34125545 [TBL] [Abstract][Full Text] [Related]
19. Ultrafast microfluidic mixer and freeze-quenching device. Lin Y; Gerfen GJ; Rousseau DL; Yeh SR Anal Chem; 2003 Oct; 75(20):5381-6. PubMed ID: 14710815 [TBL] [Abstract][Full Text] [Related]
20. Toward a solid-phase nucleic acid hybridization assay within microfluidic channels using immobilized quantum dots as donors in fluorescence resonance energy transfer. Chen L; Algar WR; Tavares AJ; Krull UJ Anal Bioanal Chem; 2011 Jan; 399(1):133-41. PubMed ID: 20978748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]