BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 15595881)

  • 21. Optimization of the design and operation of FAIMS analyzers.
    Shvartsburg AA; Tang K; Smith RD
    J Am Soc Mass Spectrom; 2005 Jan; 16(1):2-12. PubMed ID: 15653358
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-field asymmetric waveform ion mobility spectrometry coupled with liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-FAIMS-MS/MS) multi-component bioanalytical method development, performance evaluation and demonstration of the constancy of the compensation voltage with change of mobile phase composition or flow rate.
    Wu ST; Xia YQ; Jemal M
    Rapid Commun Mass Spectrom; 2007; 21(22):3667-76. PubMed ID: 17939154
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Feasibility of higher-order differential ion mobility separations using new asymmetric waveforms.
    Shvartsburg AA; Mashkevich SV; Smith RD
    J Phys Chem A; 2006 Mar; 110(8):2663-73. PubMed ID: 16494377
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ion mobility-mass spectrometry.
    Kanu AB; Dwivedi P; Tam M; Matz L; Hill HH
    J Mass Spectrom; 2008 Jan; 43(1):1-22. PubMed ID: 18200615
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Compensation voltage shifting in high-field asymmetric waveform ion mobility spectrometry-mass spectrometry.
    Kolakowski BM; McCooeye MA; Mester Z
    Rapid Commun Mass Spectrom; 2006; 20(22):3319-29. PubMed ID: 17044119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ion-neutral potential models in atmospheric pressure ion mobility time-of-flight mass spectrometry IM(tof)MS.
    Steiner WE; English WA; Hill HH
    J Phys Chem A; 2006 Feb; 110(5):1836-44. PubMed ID: 16451015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS).
    Kolakowski BM; Mester Z
    Analyst; 2007 Sep; 132(9):842-64. PubMed ID: 17710259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid separation and quantitative analysis of peptides using a new nanoelectrospray- differential mobility spectrometer-mass spectrometer system.
    Levin DS; Miller RA; Nazarov EG; Vouros P
    Anal Chem; 2006 Aug; 78(15):5443-52. PubMed ID: 16878881
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting ion mobility as a function of the electric field for small ions in light gases.
    Gandhi VD; Larriba-Andaluz C
    Anal Chim Acta; 2021 Nov; 1184():339019. PubMed ID: 34625252
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enantiomer separation of amino acids by complexation with chiral reference compounds and high-field asymmetric waveform ion mobility spectrometry: preliminary results and possible limitations.
    Mie A; Jörntén-Karlsson M; Axelsson BO; Ray A; Reimann CT
    Anal Chem; 2007 Apr; 79(7):2850-8. PubMed ID: 17326611
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology.
    Bush MF; Hall Z; Giles K; Hoyes J; Robinson CV; Ruotolo BT
    Anal Chem; 2010 Nov; 82(22):9557-65. PubMed ID: 20979392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential ion mobility separations in up to 100% helium using microchips.
    Shvartsburg AA; Ibrahim YM; Smith RD
    J Am Soc Mass Spectrom; 2014 Mar; 25(3):480-9. PubMed ID: 24402673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of high-field asymmetric waveform ion mobility spectrometry mass spectrometry for the analysis of the mycotoxin zearalenone.
    McCooeye M; Kolakowski B; Boison J; Mester Z
    Anal Chim Acta; 2008 Oct; 627(1):112-6. PubMed ID: 18790134
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced sensitivity in proteomics experiments using FAIMS coupled with a hybrid linear ion trap/Orbitrap mass spectrometer.
    Saba J; Bonneil E; Pomiès C; Eng K; Thibault P
    J Proteome Res; 2009 Jul; 8(7):3355-66. PubMed ID: 19469569
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of ion distortion in field asymmetric waveform ion mobility spectrometry via variation of dispersion field and gas temperature.
    Robinson EW; Shvartsburg AA; Tang K; Smith RD
    Anal Chem; 2008 Oct; 80(19):7508-15. PubMed ID: 18729473
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural identification of highly polar nontarget contaminants in drinking water by ESI-FAIMS-Q-TOF-MS.
    Sultan J; Gabryelski W
    Anal Chem; 2006 May; 78(9):2905-17. PubMed ID: 16642975
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ion mobility mass spectrometry of peptide ions: effects of drift gas and calibration strategies.
    Bush MF; Campuzano ID; Robinson CV
    Anal Chem; 2012 Aug; 84(16):7124-30. PubMed ID: 22845859
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling the resolution and sensitivity of FAIMS analyses.
    Shvartsburg AA; Tang K; Smith RD
    J Am Soc Mass Spectrom; 2004 Oct; 15(10):1487-1498. PubMed ID: 15465362
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneously improving the resolving power and sensitivity for planar high-field asymmetric waveform ion mobility spectrometry using a mixed gas inlet mode at two ends.
    Wei Z; Du X; Zeng H; Chen Z; Xiao W; Li H
    Rapid Commun Mass Spectrom; 2021 Dec; 35(23):e9198. PubMed ID: 34559434
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peak capacity of ion mobility mass spectrometry: the utility of varying drift gas polarizability for the separation of tryptic peptides.
    Ruotolo BT; McLean JA; Gillig KJ; Russell DH
    J Mass Spectrom; 2004 Apr; 39(4):361-7. PubMed ID: 15103649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.