These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 15596496)

  • 41. Cholesterol effects on the phosphatidylcholine bilayer polar region: a molecular simulation study.
    Pasenkiewicz-Gierula M; Róg T; Kitamura K; Kusumi A
    Biophys J; 2000 Mar; 78(3):1376-89. PubMed ID: 10692323
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modulating membrane properties: the effect of trehalose and cholesterol on a phospholipid bilayer.
    Doxastakis M; Sum AK; de Pablo JJ
    J Phys Chem B; 2005 Dec; 109(50):24173-81. PubMed ID: 16375409
    [TBL] [Abstract][Full Text] [Related]  

  • 43. X-ray kinematography of phase transformations of three-component lipid mixtures: a time-resolved synchrotron X-ray scattering study using the pressure-jump relaxation technique.
    Jeworrek C; Pühse M; Winter R
    Langmuir; 2008 Oct; 24(20):11851-9. PubMed ID: 18767826
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dissipation-enhanced quartz crystal microbalance studies on the experimental parameters controlling the formation of supported lipid bilayers.
    Seantier B; Breffa C; Félix O; Decher G
    J Phys Chem B; 2005 Nov; 109(46):21755-65. PubMed ID: 16853826
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of cholesterol on phospholipid membranes: inhibition of the interdigitated gel phase of F-DPPC and F-DPPC/DPPC.
    Smith EA; Wang W; Dea PK
    Chem Phys Lipids; 2012 Feb; 165(2):151-9. PubMed ID: 22200532
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The bilayer melting transition in lung surfactant bilayers: the role of cholesterol.
    Larsson M; Larsson K; Nylander T; Wollmer P
    Eur Biophys J; 2003 Feb; 31(8):633-6. PubMed ID: 12582823
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Subgel studies of dimyristoylphosphatidylcholine bilayers.
    Chang HH; Bhagat RK; Tran R; Dea P
    J Phys Chem B; 2006 Nov; 110(44):22192-6. PubMed ID: 17078657
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bilayer thickness in unilamellar extruded 1,2-dimyristoleoyl and 1,2-dierucoyl phosphatidylcholine vesicles: SANS contrast variation study of cholesterol effect.
    Gallová J; Uhríková D; Hanulová M; Teixeira J; Balgavý P
    Colloids Surf B Biointerfaces; 2004 Oct; 38(1-2):11-4. PubMed ID: 15465298
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular simulation of the DMPC-cholesterol phase diagram.
    de Meyer FJ; Benjamini A; Rodgers JM; Misteli Y; Smit B
    J Phys Chem B; 2010 Aug; 114(32):10451-61. PubMed ID: 20662483
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydration of phospholipid bilayers in the presence and absence of cholesterol.
    Bach D; Miller IR
    Chem Phys Lipids; 2005 Jul; 136(1):67-72. PubMed ID: 15941564
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lessons of slicing membranes: interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers.
    Falck E; Patra M; Karttunen M; Hyvönen MT; Vattulainen I
    Biophys J; 2004 Aug; 87(2):1076-91. PubMed ID: 15298912
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The polar nature of 7-ketocholesterol determines its location within membrane domains and the kinetics of membrane microsolubilization by apolipoprotein A-I.
    Massey JB; Pownall HJ
    Biochemistry; 2005 Aug; 44(30):10423-33. PubMed ID: 16042420
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sterol chemical configuration influences the thermotropic phase behaviour of dipalmitoylphosphatidylcholine bilayers containing 5α-cholestan-3β- and 3α-ol.
    Benesch MG; Mannock DA; McElhaney RN
    Chem Phys Lipids; 2011 Jan; 164(1):62-9. PubMed ID: 21055394
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Formation of 3D cholesterol crystals from 2D nucleation sites in lipid bilayer membranes: implications for atherosclerosis.
    Varsano N; Fargion I; Wolf SG; Leiserowitz L; Addadi L
    J Am Chem Soc; 2015 Feb; 137(4):1601-7. PubMed ID: 25584426
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oriented crystalline monolayers and bilayers of 2 x 2 silver(I) grid architectures at the air-solution interface: their assembly and crystal structure elucidation.
    Weissbuch I; Baxter PN; Kuzmenko I; Cohen H; Cohen S; Kjaer K; Howes PB; Als-Nielsen J; Lehn JM; Leiserowitz L; Lahav M
    Chemistry; 2000 Feb; 6(4):725-34. PubMed ID: 10807183
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A coupled proton-transfer and twisting-motion fluorescence probe for lipid bilayers.
    Mateo CR; Douhal A
    Proc Natl Acad Sci U S A; 1998 Jun; 95(13):7245-50. PubMed ID: 9636133
    [TBL] [Abstract][Full Text] [Related]  

  • 57. X-ray crystallographic characterization of nilvadipine monohydrate and its phase transition behavior.
    Hirayama F; Honjo M; Arima H; Okimoto K; Uekama K
    Eur J Pharm Sci; 2000 Jul; 11(1):81-8. PubMed ID: 10913756
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A bilayer to monolayer phase transition in liquid crystal glycolipids.
    Molinier V; Kouwer PH; Queneau Y; Fitremann J; Mackenzie G; Goodby JW
    Chem Commun (Camb); 2003 Dec; (23):2860-1. PubMed ID: 14680211
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lipid crystallization: from self-assembly to hierarchical and biological ordering.
    Kulkarni CV
    Nanoscale; 2012 Sep; 4(19):5779-91. PubMed ID: 22899223
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Crystallization of Cholesterol in Phospholipid Membranes Follows Ostwald's Rule of Stages.
    Park S; Sut TN; Ma GJ; Parikh AN; Cho NJ
    J Am Chem Soc; 2020 Dec; 142(52):21872-21882. PubMed ID: 33345541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.