These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 15596516)

  • 1. Anthrax toxin protective antigen: inhibition of channel function by chloroquine and related compounds and study of binding kinetics using the current noise analysis.
    Orlik F; Schiffler B; Benz R
    Biophys J; 2005 Mar; 88(3):1715-24. PubMed ID: 15596516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of C2-toxin inhibition by fluphenazine and related compounds: investigation of their binding kinetics to the C2II-channel using the current noise analysis.
    Bachmeyer C; Orlik F; Barth H; Aktories K; Benz R
    J Mol Biol; 2003 Oct; 333(3):527-40. PubMed ID: 14556742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anthrax lethal factor (LF) mediated block of the anthrax protective antigen (PA) ion channel: effect of ionic strength and voltage.
    Neumeyer T; Tonello F; Dal Molin F; Schiffler B; Orlik F; Benz R
    Biochemistry; 2006 Mar; 45(9):3060-8. PubMed ID: 16503661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of N-terminal fragments of anthrax edema factor (EF(N)) and lethal factor (LF(N)) to the protective antigen pore.
    Leuber M; Kronhardt A; Tonello F; Dal Molin F; Benz R
    Biochim Biophys Acta; 2008 Jun; 1778(6):1436-43. PubMed ID: 18243126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein translocation through anthrax toxin channels formed in planar lipid bilayers.
    Zhang S; Udho E; Wu Z; Collier RJ; Finkelstein A
    Biophys J; 2004 Dec; 87(6):3842-9. PubMed ID: 15377524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noise analysis of ion current through the open and the sugar-induced closed state of the LamB channel of Escherichia coli outer membrane: evaluation of the sugar binding kinetics to the channel interior.
    Nekolla S; Andersen C; Benz R
    Biophys J; 1994 May; 66(5):1388-97. PubMed ID: 7520291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PA63 channel of anthrax toxin: an extended beta-barrel.
    Nassi S; Collier RJ; Finkelstein A
    Biochemistry; 2002 Feb; 41(5):1445-50. PubMed ID: 11814336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloroquine-analogues block anthrax protective antigen channels in steady-state and kinetic studies.
    Beitzinger C; Kronhardt A; Benz R
    Toxicology; 2023 Jun; 492():153547. PubMed ID: 37201861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of residues lining the anthrax protective antigen channel.
    Benson EL; Huynh PD; Finkelstein A; Collier RJ
    Biochemistry; 1998 Mar; 37(11):3941-8. PubMed ID: 9521715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anthrax edema factor, voltage-dependent binding to the protective antigen ion channel and comparison to LF binding.
    Neumeyer T; Tonello F; Dal Molin F; Schiffler B; Benz R
    J Biol Chem; 2006 Oct; 281(43):32335-43. PubMed ID: 16954207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chloroquine derivatives block the translocation pores and inhibit cellular entry of Clostridium botulinum C2 toxin and Bacillus anthracis lethal toxin.
    Kreidler AM; Benz R; Barth H
    Arch Toxicol; 2017 Mar; 91(3):1431-1445. PubMed ID: 27106023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preventing voltage-dependent gating of anthrax toxin channels using engineered disulfides.
    Anderson DS; Blaustein RO
    J Gen Physiol; 2008 Sep; 132(3):351-60. PubMed ID: 18725530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The channel formed in planar lipid bilayers by the protective antigen component of anthrax toxin.
    Finkelstein A
    Toxicology; 1994 Feb; 87(1-3):29-41. PubMed ID: 7512762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of complexes between wild-type and mutant anthrax protective antigen variants and a model anthrax toxin receptor.
    Stiles L; Nelson DJ
    J Biomol Struct Dyn; 2005 Apr; 22(5):503-19. PubMed ID: 15702923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion selectivity of the anthrax toxin channel and its effect on protein translocation.
    Schiffmiller A; Anderson D; Finkelstein A
    J Gen Physiol; 2015 Aug; 146(2):183-92. PubMed ID: 26170174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designed azolopyridinium salts block protective antigen pores in vitro and protect cells from anthrax toxin.
    Beitzinger C; Bronnhuber A; Duscha K; Riedl Z; Huber-Lang M; Benz R; Hajós G; Barth H
    PLoS One; 2013; 8(6):e66099. PubMed ID: 23840407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloroquine Analog Interaction with C2- and Iota-Toxin in Vitro and in Living Cells.
    Kronhardt A; Beitzinger C; Barth H; Benz R
    Toxins (Basel); 2016 Aug; 8(8):. PubMed ID: 27517960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anthrax toxin: channel-forming activity of protective antigen in planar phospholipid bilayers.
    Blaustein RO; Koehler TM; Collier RJ; Finkelstein A
    Proc Natl Acad Sci U S A; 1989 Apr; 86(7):2209-13. PubMed ID: 2467303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secondary Structure Preferences of the Anthrax Toxin Protective Antigen Translocase.
    Das D; Krantz BA
    J Mol Biol; 2017 Mar; 429(5):753-762. PubMed ID: 28115202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Dendrimer Terminal Group Chemistry on Blockage of the Anthrax Toxin Channel: A Single Molecule Study.
    Yamini G; Kalu N; Nestorovich EM
    Toxins (Basel); 2016 Nov; 8(11):. PubMed ID: 27854272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.