These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15597054)

  • 1. Effect of nerve cell currents on MRI images in snail ganglia.
    Park TS; Lee SY; Park JH; Lee SY
    Neuroreport; 2004 Dec; 15(18):2783-6. PubMed ID: 15597054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of the fast response of a magnetic resonance signal to neuronal activity: a snail ganglia study.
    Park TS; Lee SY; Park JH; Cho MH; Lee SY
    Physiol Meas; 2006 Feb; 27(2):181-90. PubMed ID: 16400204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Realistic simulations of neuronal activity: a contribution to the debate on direct detection of neuronal currents by MRI.
    Cassarà AM; Hagberg GE; Bianciardi M; Migliore M; Maraviglia B
    Neuroimage; 2008 Jan; 39(1):87-106. PubMed ID: 17936018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of static magnetic fields on bioelectric properties of the Br and N1 neurons of snail Helix pomatia.
    Nikolić L; Kartelija G; Nedeljković M
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Dec; 151(4):657-63. PubMed ID: 18760374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Functional organization and structure of the serotonergic neuronal network of terrestrial snail].
    Nikitin ES; Balaban PM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2011; 61(6):750-62. PubMed ID: 22384736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide-cyclic guanosine monophosphate signaling in the local circuit of the cricket abdominal nervous system.
    Aonuma H; Kitamura Y; Niwa K; Ogawa H; Oka K
    Neuroscience; 2008 Dec; 157(4):749-61. PubMed ID: 18940234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of nitric oxidergic neurons in the alimentary tract of the snail Helix pomatia L.: histochemical and physiological study.
    Serfözö Z; Szentmiklósi AJ; Elekes K
    J Comp Neurol; 2008 Feb; 506(5):801-21. PubMed ID: 18076086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitatory actions of GABA mediate severe-hypoxia-induced depression of neuronal activity in the pond snail (Lymnaea stagnalis).
    Cheung U; Moghaddasi M; Hall HL; Smith JJ; Buck LT; Woodin MA
    J Exp Biol; 2006 Nov; 209(Pt 22):4429-35. PubMed ID: 17079713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of a constant magnetic field on the electrophysiologic parameters of identified neurons in the edible snail].
    Bravarenko NI; Balaban PM; Kuznetsov AN
    Biofizika; 1981; 26(5):879-84. PubMed ID: 7317474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of homeopathic doses of antibodies to antigen S-100 on the electric parameters of neuronal membranes].
    Epshteĭn OI; Gaĭnutdinov KhL; Shtark MB
    Biull Eksp Biol Med; 1999 Apr; 127(4):466-7. PubMed ID: 10367139
    [No Abstract]   [Full Text] [Related]  

  • 11. Dopamine modulation of two delayed rectifier potassium currents in a small neural network.
    Gruhn M; Guckenheimer J; Land B; Harris-Warrick RM
    J Neurophysiol; 2005 Oct; 94(4):2888-900. PubMed ID: 16014791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forskolin potentiates the paraoxon-induced hyperexcitability in snail neurons by blocking afterhyperpolarization.
    Vatanparast J; Janahmadi M; Asgari AR
    Neurotoxicology; 2007 Nov; 28(6):1178-83. PubMed ID: 17720247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epileptogenic drugs in a model nervous system: electrophysiological effects and incorporation into a phospholipid layer.
    Altrup U; Häder M; Cáceres JL; Malcharek S; Meyer M; Galla HJ
    Brain Res; 2006 Nov; 1122(1):65-77. PubMed ID: 17049497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The presence and distribution of pituitary adenylate cyclase activating polypeptide and its receptor in the snail Helix pomatia.
    Hernádi L; Pirger Z; Kiss T; Németh J; Mark L; Kiss P; Tamas A; Lubics A; Toth G; Shioda S; Reglodi D
    Neuroscience; 2008 Aug; 155(2):387-402. PubMed ID: 18590802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanism of regulation of the spontaneous activity of snail giant neurons].
    Aĭrapetian SN
    Biofizika; 1969; 14(5):866-72. PubMed ID: 5396544
    [No Abstract]   [Full Text] [Related]  

  • 16. Direct magnetic resonance detection of neuronal electrical activity.
    Petridou N; Plenz D; Silva AC; Loew M; Bodurka J; Bandettini PA
    Proc Natl Acad Sci U S A; 2006 Oct; 103(43):16015-20. PubMed ID: 17038505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of procaine on a central neuron of the snail, Achatina fulica Ferussac.
    Lin CH; Tsai MC
    Life Sci; 2005 Feb; 76(14):1641-66. PubMed ID: 15680172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of dinitrophenol and sodium azide on the electrophysiological properties of snail giant neurons].
    Akimov IuA
    Fiziol Zh SSSR Im I M Sechenova; 1973 Jan; 59(1):53-61. PubMed ID: 4684678
    [No Abstract]   [Full Text] [Related]  

  • 19. Microscopic investigation of the resonant mechanism for the implementation of nc-MRI at ultra-low field MRI.
    Cassarà AM; Maraviglia B
    Neuroimage; 2008 Jul; 41(4):1228-41. PubMed ID: 18474435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Electrophysiological study of effects of chronic injection of caffeine on defensive reflex conditioning in grape snail].
    Silant'eva DI; Gaĭnutdinova TKh; Andrianov VV; Gaĭnutdinov KhL
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2008; 58(2):202-8. PubMed ID: 18661782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.