These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 1559708)

  • 1. Beta satellite DNA: characterization and localization of two subfamilies from the distal and proximal short arms of the human acrocentric chromosomes.
    Greig GM; Willard HF
    Genomics; 1992 Mar; 12(3):573-80. PubMed ID: 1559708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A homologous subfamily of satellite III DNA on human chromosomes 14 and 22.
    Choo KH; Earle E; McQuillan C
    Nucleic Acids Res; 1990 Oct; 18(19):5641-8. PubMed ID: 2216757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A chromosome 13-specific human satellite I DNA subfamily with minor presence on chromosome 21: further studies on Robertsonian translocations.
    Kalitsis P; Earle E; Vissel B; Shaffer LG; Choo KH
    Genomics; 1993 Apr; 16(1):104-12. PubMed ID: 8486347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concerted evolution of primate alpha satellite DNA. Evidence for an ancestral sequence shared by gorilla and human X chromosome alpha satellite.
    Durfy SJ; Willard HF
    J Mol Biol; 1990 Dec; 216(3):555-66. PubMed ID: 2258932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human ribosomal RNA gene cluster: identification of the proximal end containing a novel tandem repeat sequence.
    Sakai K; Ohta T; Minoshima S; Kudoh J; Wang Y; de Jong PJ; Shimizu N
    Genomics; 1995 Apr; 26(3):521-6. PubMed ID: 7607675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of satellite III subfamilies to the acrocentric chromosomes.
    Bandyopadhyay R; McQuillan C; Page SL; Choo KH; Shaffer LG
    Chromosome Res; 2001; 9(3):223-33. PubMed ID: 11330397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning, characterization and chromosomal location of a satellite DNA from the Pacific oyster, Crassostrea gigas.
    Clabby C; Goswami U; Flavin F; Wilkins NP; Houghton JA; Powell R
    Gene; 1996 Feb; 168(2):205-9. PubMed ID: 8654945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new multisequence family in human.
    Assum G; Fink T; Klett C; Lengl B; Schanbacher M; Uhl S; Wöhr G
    Genomics; 1991 Oct; 11(2):397-409. PubMed ID: 1769654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Existence of a negative correlation in the level of satellite DNA III and the number of rRNA gene repeats, localized on the short arms of human acrocentric chromosomes].
    Voskoboĭnik NI; Kroshkina VN; Nagle EF; Miliutikov SA
    Genetika; 1993 Feb; 29(2):212-6. PubMed ID: 8486251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of DNA near long tandem arrays of alpha satellite DNA at the centromere of human chromosome 7.
    Wevrick R; Willard VP; Willard HF
    Genomics; 1992 Dec; 14(4):912-23. PubMed ID: 1478672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization and evolution of an alpha satellite DNA subset shared by human chromosomes 13 and 21.
    Greig GM; Warburton PE; Willard HF
    J Mol Evol; 1993 Nov; 37(5):464-75. PubMed ID: 8283478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and chromosomal distribution of novel satellite DNA sequences of the lesser rhea (Pterocnemia pennata) and the greater rhea (Rhea americana).
    Yamada K; Nishida-Umehara C; Matsuda Y
    Chromosome Res; 2002; 10(6):513-23. PubMed ID: 12489832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution mapping of repetitive DNA by in situ hybridization: molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet species Beta procumbens.
    Schmidt T; Heslop-Harrison JS
    Plant Mol Biol; 1996 Mar; 30(6):1099-113. PubMed ID: 8704122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human beta satellite DNA: genomic organization and sequence definition of a class of highly repetitive tandem DNA.
    Waye JS; Willard HF
    Proc Natl Acad Sci U S A; 1989 Aug; 86(16):6250-4. PubMed ID: 2762326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A human alphoid DNA clone from the EcoRI dimeric family: genomic and internal organization and chromosomal assignment.
    Baldini A; Smith DI; Rocchi M; Miller OJ; Miller DA
    Genomics; 1989 Nov; 5(4):822-8. PubMed ID: 2591965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel repeated DNA sequences in safflower (Carthamus tinctorius L.) (Asteraceae): cloning, sequencing, and physical mapping by fluorescence in situ hybridization.
    Raina SN; Sharma S; Sasakuma T; Kishii M; Vaishnavi S
    J Hered; 2005; 96(4):424-9. PubMed ID: 15731214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of human extrachromosomal DNA elements originating from different beta-satellite subfamilies.
    Assum G; Fink T; Steinbeisser T; Fisel KJ
    Hum Genet; 1993 Jun; 91(5):489-95. PubMed ID: 8314563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Evolution of satellite III DNA subfamilies among primates.
    Jarmuz M; Glotzbach CD; Bailey KA; Bandyopadhyay R; Shaffer LG
    Am J Hum Genet; 2007 Mar; 80(3):495-501. PubMed ID: 17273970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosome-specific organization of human alpha satellite DNA.
    Willard HF
    Am J Hum Genet; 1985 May; 37(3):524-32. PubMed ID: 2988334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Monomers of a satellite sequence of chaffinch (Fringilla coelebs L., Aves: Passeriformes) genome contains short clusters of the TTTAGGG repeat].
    Lianguzov IA; Deriusheva SE; Saĭfitdinova AF; Malykh AG; Gaginskaia ER
    Genetika; 2002 Dec; 38(12):1607-13. PubMed ID: 12575444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.