These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 15597204)
1. Structure and dynamics of Candida rugosa lipase: the role of organic solvent. Tejo BA; Salleh AB; Pleiss J J Mol Model; 2004 Dec; 10(5-6):358-66. PubMed ID: 15597204 [TBL] [Abstract][Full Text] [Related]
2. Modeling structure and flexibility of Candida antarctica lipase B in organic solvents. Trodler P; Pleiss J BMC Struct Biol; 2008 Feb; 8():9. PubMed ID: 18254946 [TBL] [Abstract][Full Text] [Related]
3. Activation of Candida rugosa lipase at alkane-aqueous interfaces: a molecular dynamics study. James JJ; Lakshmi BS; Seshasayee AS; Gautam P FEBS Lett; 2007 Sep; 581(23):4377-83. PubMed ID: 17765226 [TBL] [Abstract][Full Text] [Related]
4. Solvent-induced lid opening in lipases: a molecular dynamics study. Rehm S; Trodler P; Pleiss J Protein Sci; 2010 Nov; 19(11):2122-30. PubMed ID: 20812327 [TBL] [Abstract][Full Text] [Related]
5. Prediction of the solvent affecting site and the computational design of stable Candida antarctica lipase B in a hydrophilic organic solvent. Park HJ; Joo JC; Park K; Kim YH; Yoo YJ J Biotechnol; 2013 Feb; 163(3):346-52. PubMed ID: 23178554 [TBL] [Abstract][Full Text] [Related]
6. Enzyme catalysis in organic solvents: influence of water content, solvent composition and temperature on Candida rugosa lipase catalyzed transesterification. Herbst D; Peper S; Niemeyer B J Biotechnol; 2012 Dec; 162(4):398-403. PubMed ID: 22465292 [TBL] [Abstract][Full Text] [Related]
7. Toluene promotes lid 2 interfacial activation of cold active solvent tolerant lipase from Pseudomonas fluorescens strain AMS8. Yaacob N; Mohamad Ali MS; Salleh AB; Rahman RNZRA; Leow ATC J Mol Graph Model; 2016 Jul; 68():224-235. PubMed ID: 27474867 [TBL] [Abstract][Full Text] [Related]
9. Analysis of the conformational stability and activity of Candida antarctica lipase B in organic solvents: insight from molecular dynamics and quantum mechanics/simulations. Li C; Tan T; Zhang H; Feng W J Biol Chem; 2010 Sep; 285(37):28434-41. PubMed ID: 20601697 [TBL] [Abstract][Full Text] [Related]
10. Activity and enantioselectivity of wildtype and lid mutated Candida rugosa lipase isoform 1 in organic solvents. Secundo F; Carrea G; Tarabiono C; Brocca S; Lotti M Biotechnol Bioeng; 2004 Apr; 86(2):236-40. PubMed ID: 15052644 [TBL] [Abstract][Full Text] [Related]
11. Computational approach to solvent-free synthesis of ethyl oleate using Candida rugosa and Candida antarctica B Lipases. I. Interfacial activation and substrate (ethanol, oleic acid) adsorption. Foresti ML; Ferreira ML Biomacromolecules; 2004; 5(6):2366-75. PubMed ID: 15530053 [TBL] [Abstract][Full Text] [Related]
12. Solvent as a competitive inhibitor for Candida antarctica lipase B. Graber M; Irague R; Rosenfeld E; Lamare S; Franson L; Hult K Biochim Biophys Acta; 2007 Aug; 1774(8):1052-7. PubMed ID: 17602903 [TBL] [Abstract][Full Text] [Related]
13. Structural and dynamic features of Candida rugosa lipase 1 in water, octane, toluene, and ionic liquids BMIM-PF6 and BMIM-NO3. Burney PR; Pfaendtner J J Phys Chem B; 2013 Mar; 117(9):2662-70. PubMed ID: 23387335 [TBL] [Abstract][Full Text] [Related]
14. Two conformational states of Candida rugosa lipase. Grochulski P; Li Y; Schrag JD; Cygler M Protein Sci; 1994 Jan; 3(1):82-91. PubMed ID: 8142901 [TBL] [Abstract][Full Text] [Related]
15. Insights into lid movements of Burkholderia cepacia lipase inferred from molecular dynamics simulations. Barbe S; Lafaquière V; Guieysse D; Monsan P; Remaud-Siméon M; André I Proteins; 2009 Nov; 77(3):509-23. PubMed ID: 19475702 [TBL] [Abstract][Full Text] [Related]
16. Chemical modification with functionalized ionic liquids: a novel method to improve the enzymatic properties of Candida rugosa lipase. Hu Y; Yang J; Jia R; Ding Y; Li S; Huang H Bioprocess Biosyst Eng; 2014 Aug; 37(8):1617-26. PubMed ID: 24488260 [TBL] [Abstract][Full Text] [Related]
17. Molecular mechanism of deactivation of C. antarctica lipase B by methanol. Kulschewski T; Sasso F; Secundo F; Lotti M; Pleiss J J Biotechnol; 2013 Dec; 168(4):462-9. PubMed ID: 24144811 [TBL] [Abstract][Full Text] [Related]
18. Mutants provide evidence of the importance of glycosydic chains in the activation of lipase 1 from Candida rugosa. Brocca S; Persson M; Wehtje E; Adlercreutz P; Alberghina L; Lotti M Protein Sci; 2000 May; 9(5):985-90. PubMed ID: 10850808 [TBL] [Abstract][Full Text] [Related]
19. Molecular modeling of lipase binding to a substrate-water interface. Gruber CC; Pleiss J Methods Mol Biol; 2012; 861():313-27. PubMed ID: 22426727 [TBL] [Abstract][Full Text] [Related]
20. Solvent-dependent gating motions of an extremophilic lipase from Pseudomonas aeruginosa. Johnson QR; Nellas RB; Shen T Biochemistry; 2012 Aug; 51(31):6238-45. PubMed ID: 22830585 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]