BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 15597597)

  • 1. The biology and life history of arctic populations of the littoral mite Ameronothrus lineatus (Acari, Oribatida).
    Søvik G
    Exp Appl Acarol; 2004; 34(1-2):3-20. PubMed ID: 15597597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two Lineages of Oribatid Mites Morphologically Correspond to the Circumpolar Species Ameronothrus nigrofemoratus (Acari, Oribatida) but Differ Genetically as Distinct Species Are Revealed on the Kolguev Island.
    Artamonova VS; Bizin MS; Efeykin BD; Makarova OL
    Dokl Biol Sci; 2023 Oct; 512(1):321-325. PubMed ID: 38087021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhythmic life of the Arctic charr: adaptations to life at the edge.
    Jørgensen EH; Johnsen HK
    Mar Genomics; 2014 Apr; 14():71-81. PubMed ID: 24291060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In hot and cold water: differential life-history traits are key to success in contrasting thermal deep-sea environments.
    Marsh L; Copley JT; Tyler PA; Thatje S
    J Anim Ecol; 2015 Jul; 84(4):898-913. PubMed ID: 25732205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Latitudinal variation in habitat specificity of ameronothrid mites (Oribatida).
    Marshall DJ; Convey P
    Exp Appl Acarol; 2004; 34(1-2):21-35. PubMed ID: 15597598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity of oribatid mites (Acari: Oribatida) in the Svalbard archipelago: a historical overview.
    Seniczak A; Seniczak S
    Zootaxa; 2020 Aug; 4834(1):zootaxa.4834.1.3. PubMed ID: 33056131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies of survival and resource exploitation in the Antarctic fellfield ecosystem.
    Block W; Lewis Smith RI; Kennedy AD
    Biol Rev Camb Philos Soc; 2009 Aug; 84(3):449-84. PubMed ID: 19659886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal adaptations in arctic insects.
    Danks HV
    Integr Comp Biol; 2004 Apr; 44(2):85-94. PubMed ID: 21680489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodiversity, distributions and adaptations of Arctic species in the context of environmental change.
    Callaghan TV; Björn LO; Chernov Y; Chapin T; Christensen TR; Huntley B; Ims RA; Johansson M; Jolly D; Jonasson S; Matveyeva N; Panikov N; Oechel W; Shaver G; Elster J; Henttonen H; Laine K; Taulavuori K; Taulavuori E; Zöckler C
    Ambio; 2004 Nov; 33(7):404-17. PubMed ID: 15573569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cold tolerance of Alpine, Arctic, and Antarctic Collembola and mites.
    Sømme L
    Cryobiology; 1981 Apr; 18(2):212-20. PubMed ID: 7238073
    [No Abstract]   [Full Text] [Related]  

  • 11. Spring temperature, migration chronology, and nutrient allocation to eggs in three species of arctic-nesting geese: Implications for resilience to climate warming.
    Hupp JW; Ward DH; Soto DX; Hobson KA
    Glob Chang Biol; 2018 Nov; 24(11):5056-5071. PubMed ID: 30092605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal dynamics and changing sea level as determinants of the community and trophic structure of oribatid mites in a salt marsh of the Wadden Sea.
    Winter M; Haynert K; Scheu S; Maraun M
    PLoS One; 2018; 13(11):e0207141. PubMed ID: 30408121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cool tadpoles from Arctic environments waste fewer nutrients - high gross growth efficiencies lead to low consumer-mediated nutrient recycling in the North.
    Liess A; Guo J; Lind MI; Rowe O
    J Anim Ecol; 2015 Nov; 84(6):1744-56. PubMed ID: 26239271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of heat and cold tolerance of a freeze-tolerant soil invertebrate distributed from temperate to Arctic regions: evidence of selection for extreme cold tolerance.
    Holmstrup M; Sørensen JG; Dai W; Krogh PH; Schmelz RM; Slotsbo S
    J Comp Physiol B; 2022 Jul; 192(3-4):435-445. PubMed ID: 35312816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reproductive seasonality in captive wild ruminants: implications for biogeographical adaptation, photoperiodic control, and life history.
    Zerbe P; Clauss M; Codron D; Bingaman Lackey L; Rensch E; Streich JW; Hatt JM; Müller DW
    Biol Rev Camb Philos Soc; 2012 Nov; 87(4):965-90. PubMed ID: 22780447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural resilience in Arctic charr Salvelinus alpinus: life history, spatial and dietary alterations along gradients of interspecific interactions.
    Hammar J
    J Fish Biol; 2014 Jul; 85(1):81-118. PubMed ID: 24754706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological development, distribution and ecology of the arctic oribatid mite Hermannia scabra (Acari: Oribatida: Hermanniidae) and synonymy of Hermannia gigantea.
    Ermilov SG; Makarova OL; Bizin MS
    Zootaxa; 2019 Dec; 4717(1):zootaxa.4717.1.9. PubMed ID: 32230656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trophic structure of a tropical soil- and litter-dwelling oribatid mite community and consistency of trophic niches across biomes.
    Tsurikov SM; Ermilov SG; Tiunov AV
    Exp Appl Acarol; 2019 May; 78(1):29-48. PubMed ID: 31089979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life history of the newly discovered Japanese tree sap mite, Hericia sanukiensis (Acari, Astigmata, Algophagidae).
    Hayashi K; Ichikawa T; Yasui Y
    Exp Appl Acarol; 2010 Jan; 50(1):35-49. PubMed ID: 19593634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate adaptation is not enough: warming does not facilitate success of southern tundra plant populations in the high Arctic.
    Bjorkman AD; Vellend M; Frei ER; Henry GH
    Glob Chang Biol; 2017 Apr; 23(4):1540-1551. PubMed ID: 27391174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.