These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 15597606)

  • 1. Of spates and species: responses by interstitial water mites to simulated spates in a subtropical Australian river.
    Boulton A; Harvey M; Proctor H
    Exp Appl Acarol; 2004; 34(1-2):149-69. PubMed ID: 15597606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of invertebrates to lotic disturbance: a test of the hyporheic refuge hypothesis.
    Palmer MA; Bely AE; Berg KE
    Oecologia; 1992 Feb; 89(2):182-194. PubMed ID: 28312872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of invertebrates from the hyporheic zone of chalk rivers to eutrophication and land use.
    Pacioglu O; Moldovan OT
    Environ Sci Pollut Res Int; 2016 Mar; 23(5):4729-40. PubMed ID: 26531711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental test of the effects of food resources and hydraulic refuge on patch colonization by stream macroinvertebrates during spates.
    Negishi JN; Richardson JS
    J Anim Ecol; 2006 Jan; 75(1):118-29. PubMed ID: 16903049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do thermal infrared (TIR) remote sensing and direct hyporheic measurements (DHM) similarly detect river-groundwater exchanges? Study along a 40 km-section of the Ain River (France).
    Dole-Olivier MJ; Wawzyniak V; Creuzé des Châtelliers M; Marmonier P
    Sci Total Environ; 2019 Jan; 646():1097-1110. PubMed ID: 30235596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human impacts on the stream-groundwater exchange zone.
    Hancock PJ
    Environ Manage; 2002 Jun; 29(6):763-81. PubMed ID: 11992170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconceptualizing the hyporheic zone for nonperennial rivers and streams.
    DelVecchia AG; Shanafield M; Zimmer MA; Busch MH; Krabbenhoft CA; Stubbington R; Kaiser KE; Burrows RM; Hosen J; Datry T; Kampf SK; Zipper SC; Fritz K; Costigan K; Allen DC
    Freshw Sci; 2022 Apr; 41(2):167-182. PubMed ID: 35846249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial community dynamics in the hyporheic zone of an intermittent stream.
    Febria CM; Beddoes P; Fulthorpe RR; Williams DD
    ISME J; 2012 May; 6(5):1078-88. PubMed ID: 22158391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateral and longitudinal variation of hyporheic exchange in a piedmont stream pool.
    Ryan RJ; Boufadel MC
    Environ Sci Technol; 2007 Jun; 41(12):4221-6. PubMed ID: 17626416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Research advances in macroinvertebrate ecology of the stream hyporheic zone].
    Zhang YW; Yuan XZ; Liu H; Ren HQ
    Ying Yong Sheng Tai Xue Bao; 2014 Nov; 25(11):3357-65. PubMed ID: 25898637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local flow convergence, bed scour, and aquatic habitat formation during floods around wooden training structures placed on sand-gravel bars.
    Kobayashi S; Kantoush SA; Al-Mamari MM; Tazumi M; Takemon Y; Sumi T
    Sci Total Environ; 2022 Apr; 817():152992. PubMed ID: 35026266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and seasonal dynamics of hyporheic zone microbial communities in free-stone rivers of the western United States.
    Feris KP; Ramsey PW; Frazar C; Rillig MC; Gannon JE; Holben WE
    Microb Ecol; 2003 Aug; 46(2):200-15. PubMed ID: 14708745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drivers of functional diversity in the hyporheic zone of a large river.
    Dole-Olivier MJ; Creuzé des Châtelliers M; Galassi DMP; Lafont M; Mermillod-Blondin F; Paran F; Graillot D; Gaur S; Marmonier P
    Sci Total Environ; 2022 Oct; 843():156985. PubMed ID: 35772536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geoelectrical imaging of hyporheic exchange and mixing of river water and groundwater in a large regulated river.
    Cardenas MB; Markowski MS
    Environ Sci Technol; 2011 Feb; 45(4):1407-11. PubMed ID: 21194211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing the capacity of hyporheic sediments to attenuate groundwater nitrate loads by adsorption.
    Meghdadi A
    Water Res; 2018 Sep; 140():364-376. PubMed ID: 29751318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colonization Habitat Controls Biomass, Composition, and Metabolic Activity of Attached Microbial Communities in the Columbia River Hyporheic Corridor.
    Stern N; Ginder-Vogel M; Stegen JC; Arntzen E; Kennedy DW; Larget BR; Roden EE
    Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28600318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of streambed heterogeneity on hyporheic flow in gravelly rivers.
    Zhou Y; Ritzi RW; Soltanian MR; Dominic DF
    Ground Water; 2014; 52(2):206-16. PubMed ID: 23574542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High rates of organic carbon processing in the hyporheic zone of intermittent streams.
    Burrows RM; Rutlidge H; Bond NR; Eberhard SM; Auhl A; Andersen MS; Valdez DG; Kennard MJ
    Sci Rep; 2017 Oct; 7(1):13198. PubMed ID: 29038431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focused groundwater controlled feedbacks into the hyporheic zone during baseflow recession.
    Malzone JM; Lowry CS
    Ground Water; 2015; 53(2):217-26. PubMed ID: 24684212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-order contaminant removal in the hyporheic zone of streams: physical insights from a simple analytical model.
    Grant SB; Stolzenbach K; Azizian M; Stewardson MJ; Boano F; Bardini L
    Environ Sci Technol; 2014 Oct; 48(19):11369-78. PubMed ID: 25181637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.