These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 15597744)
21. Recognition events in AM symbiosis: analysis of fungal gene expression at the early appressorium stage. Breuninger M; Requena N Fungal Genet Biol; 2004 Aug; 41(8):794-804. PubMed ID: 15219563 [TBL] [Abstract][Full Text] [Related]
23. A CDPK isoform participates in the regulation of nodule number in Medicago truncatula. Gargantini PR; Gonzalez-Rizzo S; Chinchilla D; Raices M; Giammaria V; Ulloa RM; Frugier F; Crespi MD Plant J; 2006 Dec; 48(6):843-56. PubMed ID: 17132148 [TBL] [Abstract][Full Text] [Related]
24. The typA gene is required for stress adaptation as well as for symbiosis of Sinorhizobium meliloti 1021 with certain Medicago truncatula lines. Kiss E; Huguet T; Poinsot V; Batut J Mol Plant Microbe Interact; 2004 Mar; 17(3):235-44. PubMed ID: 15000390 [TBL] [Abstract][Full Text] [Related]
25. Gene expression analysis of arbuscule development and functioning. Franken P; Donges K; Grunwald U; Kost G; Rexer KH; Tamasloukht M; Waschke A; Zeuske D Phytochemistry; 2007 Jan; 68(1):68-74. PubMed ID: 17081578 [TBL] [Abstract][Full Text] [Related]
26. Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Myc-LCOs in Medicago truncatula. Camps C; Jardinaud MF; Rengel D; Carrère S; Hervé C; Debellé F; Gamas P; Bensmihen S; Gough C New Phytol; 2015 Oct; 208(1):224-40. PubMed ID: 25919491 [TBL] [Abstract][Full Text] [Related]
28. On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: a root proteomic study. Aloui A; Recorbet G; Gollotte A; Robert F; Valot B; Gianinazzi-Pearson V; Aschi-Smiti S; Dumas-Gaudot E Proteomics; 2009 Jan; 9(2):420-33. PubMed ID: 19072729 [TBL] [Abstract][Full Text] [Related]
29. MtENOD11 gene activation during rhizobial infection and mycorrhizal arbuscule development requires a common AT-rich-containing regulatory sequence. Boisson-Dernier A; Andriankaja A; Chabaud M; Niebel A; Journet EP; Barker DG; de Carvalho-Niebel F Mol Plant Microbe Interact; 2005 Dec; 18(12):1269-76. PubMed ID: 16478046 [TBL] [Abstract][Full Text] [Related]
30. Lipid metabolism in arbuscular mycorrhizal roots of Medicago truncatula. Stumpe M; Carsjens JG; Stenzel I; Göbel C; Lang I; Pawlowski K; Hause B; Feussner I Phytochemistry; 2005 Apr; 66(7):781-91. PubMed ID: 15797604 [TBL] [Abstract][Full Text] [Related]
31. Knock-down of the MEP pathway isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes. Floss DS; Hause B; Lange PR; Küster H; Strack D; Walter MH Plant J; 2008 Oct; 56(1):86-100. PubMed ID: 18557838 [TBL] [Abstract][Full Text] [Related]
32. The endosymbiosis-induced genes ENOD40 and CCS52a are involved in endoparasitic-nematode interactions in Medicago truncatula. Favery B; Complainville A; Vinardell JM; Lecomte P; Vaubert D; Mergaert P; Kondorosi A; Kondorosi E; Crespi M; Abad P Mol Plant Microbe Interact; 2002 Oct; 15(10):1008-13. PubMed ID: 12437298 [TBL] [Abstract][Full Text] [Related]
33. Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Liu J; Maldonado-Mendoza I; Lopez-Meyer M; Cheung F; Town CD; Harrison MJ Plant J; 2007 May; 50(3):529-44. PubMed ID: 17419842 [TBL] [Abstract][Full Text] [Related]
34. Pseudonodule formation by wild-type and symbiotic mutant Medicago truncatula in response to auxin transport inhibitors. Rightmyer AP; Long SR Mol Plant Microbe Interact; 2011 Nov; 24(11):1372-84. PubMed ID: 21809981 [TBL] [Abstract][Full Text] [Related]
35. Expression of Medicago truncatula genes responsive to nitric oxide in pathogenic and symbiotic conditions. Ferrarini A; De Stefano M; Baudouin E; Pucciariello C; Polverari A; Puppo A; Delledonne M Mol Plant Microbe Interact; 2008 Jun; 21(6):781-90. PubMed ID: 18624641 [TBL] [Abstract][Full Text] [Related]
36. Transcriptome analysis of arbuscular mycorrhizal roots during development of the prepenetration apparatus. Siciliano V; Genre A; Balestrini R; Cappellazzo G; deWit PJ; Bonfante P Plant Physiol; 2007 Jul; 144(3):1455-66. PubMed ID: 17468219 [TBL] [Abstract][Full Text] [Related]
37. Nitric oxide is formed in Medicago truncatula-Sinorhizobium meliloti functional nodules. Baudouin E; Pieuchot L; Engler G; Pauly N; Puppo A Mol Plant Microbe Interact; 2006 Sep; 19(9):970-5. PubMed ID: 16941901 [TBL] [Abstract][Full Text] [Related]
38. Medicago truncatula esn1 defines a genetic locus involved in nodule senescence and symbiotic nitrogen fixation. Xi J; Chen Y; Nakashima J; Wang SM; Chen R Mol Plant Microbe Interact; 2013 Aug; 26(8):893-902. PubMed ID: 23634841 [TBL] [Abstract][Full Text] [Related]
39. Plant science. GRAS genes and the symbiotic green revolution. Udvardi MK; Scheible WR Science; 2005 Jun; 308(5729):1749-50. PubMed ID: 15961658 [No Abstract] [Full Text] [Related]
40. MtNOA1/RIF1 modulates Medicago truncatula-Sinorhizobium meliloti nodule development without affecting its nitric oxide content. Pauly N; Ferrari C; Andrio E; Marino D; Piardi S; Brouquisse R; Baudouin E; Puppo A J Exp Bot; 2011 Jan; 62(3):939-48. PubMed ID: 21071678 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]