These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 15597873)
1. Effects of sediment characteristics on the toxicity of chromium(III) and chromium(VI) to the amphipod, Hyalella azteca. Besser JM; Brumbaugh WG; Kemble NE; May TW; Ingersoll CG Environ Sci Technol; 2004 Dec; 38(23):6210-6. PubMed ID: 15597873 [TBL] [Abstract][Full Text] [Related]
2. Predicting the toxicity of chromium in sediments. Berry WJ; Boothman WS; Serbst JR; Edwards PA Environ Toxicol Chem; 2004 Dec; 23(12):2981-92. PubMed ID: 15648774 [TBL] [Abstract][Full Text] [Related]
3. Nickel partitioning in formulated and natural freshwater sediments. Doig LE; Liber K Chemosphere; 2006 Feb; 62(6):968-79. PubMed ID: 16122779 [TBL] [Abstract][Full Text] [Related]
4. Toxicity of silver in water and sediment to the freshwater amphipod Hyalella azteca. Call DJ; Polkinghorne CN; Markee TP; Brooke LT; Geiger DL; Gorsuch JW; Robillard KA Environ Toxicol Chem; 2006 Jul; 25(7):1802-8. PubMed ID: 16833141 [TBL] [Abstract][Full Text] [Related]
5. Chronic toxicity of nickel-spiked freshwater sediments: variation in toxicity among eight invertebrate taxa and eight sediments. Besser JM; Brumbaugh WG; Ingersoll CG; Ivey CD; Kunz JL; Kemble NE; Schlekat CE; Garman ER Environ Toxicol Chem; 2013 Nov; 32(11):2495-506. PubMed ID: 23657897 [TBL] [Abstract][Full Text] [Related]
6. Validation of a new standardized test method for the freshwater amphipod Hyalella azteca: Determining the chronic effects of silver in sediment. Taylor LN; Novak L; Rendas M; Antunes PM; Scroggins RP Environ Toxicol Chem; 2016 Oct; 35(10):2430-2438. PubMed ID: 27062160 [TBL] [Abstract][Full Text] [Related]
7. Laboratory toxicity and benthic invertebrate field colonization of Upper Columbia River sediments: finding adverse effects using multiple lines of evidence. Fairchild JF; Kemble NE; Allert AL; Brumbaugh WG; Ingersoll CG; Dowling B; Gruenenfelder C; Roland JL Arch Environ Contam Toxicol; 2012 Jul; 63(1):54-68. PubMed ID: 22402778 [TBL] [Abstract][Full Text] [Related]
8. Improving sediment-quality guidelines for nickel: development and application of predictive bioavailability models to assess chronic toxicity of nickel in freshwater sediments. Vangheluwe ML; Verdonck FA; Besser JM; Brumbaugh WG; Ingersoll CG; Schlekat CE; Garman ER Environ Toxicol Chem; 2013 Nov; 32(11):2507-19. PubMed ID: 23983116 [TBL] [Abstract][Full Text] [Related]
9. Toxicity of uranium, molybdenum, nickel, and arsenic to Hyalella azteca and Chironomus dilutus in water-only and spiked-sediment toxicity tests. Liber K; Doig LE; White-Sobey SL Ecotoxicol Environ Saf; 2011 Jul; 74(5):1171-9. PubMed ID: 21529943 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of potential toxicity and bioavailability of chromium in sediments associated with chromite ore processing residue. Becker DS; Long ER; Proctor DM; Ginn TC Environ Toxicol Chem; 2006 Oct; 25(10):2576-83. PubMed ID: 17022396 [TBL] [Abstract][Full Text] [Related]
11. A field assessment of long-term laboratory sediment toxicity tests with the amphipod Hyalella azteca. Ingersoll CG; Wang N; Hayward JM; Jones JR; Jones SB; Ireland DS Environ Toxicol Chem; 2005 Nov; 24(11):2853-70. PubMed ID: 16398123 [TBL] [Abstract][Full Text] [Related]
12. Toxicity assessment of sediments from the Grand Calumet River and Indiana Harbor Canal in Northwestern Indiana, USA. Ingersoll CG; MacDonald DD; Brumbaugh WG; Johnson BT; Kemble NE; Kunz JL; May TW; Wang N; Smith JR; Sparks DW; Ireland DS Arch Environ Contam Toxicol; 2002 Aug; 43(2):156-67. PubMed ID: 12115041 [TBL] [Abstract][Full Text] [Related]
13. Ecological impacts of lead mining on Ozark streams: toxicity of sediment and pore water. Besser JM; Brumbaugh WG; Allert AL; Poulton BC; Schmitt CJ; Ingersoll CG Ecotoxicol Environ Saf; 2009 Feb; 72(2):516-26. PubMed ID: 18603298 [TBL] [Abstract][Full Text] [Related]
14. Accumulation of tributyltin in Hyalella azteca as an indicator of chronic toxicity: survival, growth, and reproduction. Bartlett AJ; Borgmann U; Dixon DG; Batchelor SP; Maguire RJ Environ Toxicol Chem; 2004 Dec; 23(12):2878-88. PubMed ID: 15648763 [TBL] [Abstract][Full Text] [Related]
15. Effects of organic amendments on the toxicity and bioavailability of cadmium and copper in spiked formulated sediments. Besser JM; Brumbaugh WG; May TW; Ingersoll CG Environ Toxicol Chem; 2003 Apr; 22(4):805-15. PubMed ID: 12685716 [TBL] [Abstract][Full Text] [Related]
16. Copper Sediment Toxicity and Partitioning during Oxidation in a Flow-Through Flume. Costello DM; Hammerschmidt CR; Burton GA Environ Sci Technol; 2015 Jun; 49(11):6926-33. PubMed ID: 25966043 [TBL] [Abstract][Full Text] [Related]
18. Sediment toxicity testing with the freshwater amphipod Hyalella azteca: relevance and application. Borgmann U; Grapentine L; Norwood WP; Bird G; Dixon DG; Lindeman D Chemosphere; 2005 Dec; 61(11):1740-3; author reply 1744-5. PubMed ID: 15939455 [No Abstract] [Full Text] [Related]
19. Interlaboratory validation of organism recovery for use in 42-day sediment toxicity tests with Hyalella azteca. Taylor LN; Novak L Environ Toxicol Chem; 2017 Apr; 36(4):1085-1089. PubMed ID: 27696539 [TBL] [Abstract][Full Text] [Related]
20. Rates of hexavalent chromium reduction in anoxic estuarine sediments: pH effects and the role of acid volatile sulfides. Graham AM; Bouwer EJ Environ Sci Technol; 2010 Jan; 44(1):136-42. PubMed ID: 20039744 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]