BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15598086)

  • 1. N-acetyl cysteine, L-cysteine, and beta-mercaptoethanol augment selenium-glutathione peroxidase activity in glucose-6-phosphate dehydrogenase-deficient human erythrocytes.
    Alicigüzel Y; Aslan M
    Clin Exp Med; 2004 Sep; 4(1):50-5. PubMed ID: 15598086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose-6-phosphate dehydrogenase deficiency increases cell adhesion molecules and activates human monocyte-endothelial cell adhesion: Protective role of l-cysteine.
    Parsanathan R; Jain SK
    Arch Biochem Biophys; 2019 Mar; 663():11-21. PubMed ID: 30582899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inability to maintain GSH pool in G6PD-deficient red cells causes futile AMPK activation and irreversible metabolic disturbance.
    Tang HY; Ho HY; Wu PR; Chen SH; Kuypers FA; Cheng ML; Chiu DT
    Antioxid Redox Signal; 2015 Mar; 22(9):744-59. PubMed ID: 25556665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. L-Cysteine in vitro can restore cellular glutathione and inhibits the expression of cell adhesion molecules in G6PD-deficient monocytes.
    Parsanathan R; Jain SK
    Amino Acids; 2018 Jul; 50(7):909-921. PubMed ID: 29626298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADPH, not glutathione, status modulates oxidant sensitivity in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes.
    Scott MD; Zuo L; Lubin BH; Chiu DT
    Blood; 1991 May; 77(9):2059-64. PubMed ID: 2018843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Red-cell GSH regeneration and glutathione reductase activity in G6PD variants in the Ferrara area.
    Anderson BB; Carandina G; Lucci M; Perry GM; Vullo C
    Br J Haematol; 1987 Dec; 67(4):459-66. PubMed ID: 3426963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced susceptibility of erythrocytes deficient in glucose-6-phosphate dehydrogenase to alloxan/glutathione-induced decrease in red cell deformability.
    Liu TZ; Lin TF; Hung IJ; Wei JS; Chiu DT
    Life Sci; 1994; 55(3):PL55-60. PubMed ID: 8007756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribose metabolism and nucleic acid synthesis in normal and glucose-6-phosphate dehydrogenase-deficient human erythrocytes infected with Plasmodium falciparum.
    Roth EF; Ruprecht RM; Schulman S; Vanderberg J; Olson JA
    J Clin Invest; 1986 Apr; 77(4):1129-35. PubMed ID: 2420826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erythrocyte superoxide dismutase, catalase and glutathione peroxidase in glucose-6-phosphate dehydrogenase deficiency.
    Gerli GC; Beretta L; Bianchi M; Agostoni A; Gualandri V; Orsini GB
    Scand J Haematol; 1982 Aug; 29(2):135-40. PubMed ID: 7134887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutathione peroxidase activity, lipid peroxides and selenium concentration in various rat organs.
    Gromadzińska J; Skłodowska M; Wasowicz W
    Biomed Biochim Acta; 1988; 47(1):19-24. PubMed ID: 3390165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchrony of G6PD activity and RBC fragility under oxidative stress exerted at normal and G6PD deficiency.
    Abboud MM; Al-Awaida W
    Clin Biochem; 2010 Mar; 43(4-5):455-60. PubMed ID: 19941843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pro-oxidative effects of tea and polyphenols, epigallocatechin-3-gallate and epigallocatechin, on G6PD-deficient erythrocytes in vitro.
    Ko CH; Li K; Ng PC; Fung KP; Li CL; Wong RP; Chui KM; Gu GJ; Yung E; Wang CC; Fok TF
    Int J Mol Med; 2006 Nov; 18(5):987-94. PubMed ID: 17016632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutathione peroxidase activity in iron-deficient rats.
    Lee YH; Layman DK; Bell RR
    J Nutr; 1981 Jan; 111(1):194-200. PubMed ID: 7452371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of molecular properties of rat plasma and erythrocyte selenium-dependent glutathione peroxidase.
    Stýblo M
    Biol Trace Elem Res; 1992 Jul; 34(1):11-8. PubMed ID: 1382517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of action of divicine in a cell-free system and in glucose-6-phosphate dehydrogenase-deficient red cells.
    Baker MA; Bosia A; Pescarmona G; Turrini F; Arese P
    Toxicol Pathol; 1984; 12(4):331-6. PubMed ID: 6099911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Hemolytic anemia due to the dysfunction of the protection against oxidative attack].
    Fujii H
    Nihon Rinsho; 1996 Sep; 54(9):2467-72. PubMed ID: 8890580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo and in vitro variations of human erythrocyte glutathione peroxidase activity as result of cells ageing, selenium availability and peroxide activation.
    Perona G; Guidi GC; Piga A; Cellerino R; Menna R; Zatti M
    Br J Haematol; 1978 Jul; 39(3):399-408. PubMed ID: 698117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pro-oxidative effects of Chinese herbal medicine on G6PD-deficient erythrocytes in vitro.
    Ko CH; Li K; Ng PC; Fung KP; Wong RP; Chui KM; Gu GJ; Yung E; Fok TF
    Toxicol In Vitro; 2008 Aug; 22(5):1222-7. PubMed ID: 18515042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selenium and glutathione peroxidase activity in Hungarian children.
    Cser MA; Sziklai-László I; Menzel H; Lombeck I
    J Trace Elem Med Biol; 1996 Sep; 10(3):167-73. PubMed ID: 8905561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Impaired glutathione metabolism in hemolytic anemia].
    Kondo T
    Rinsho Byori; 1990 Apr; 38(4):355-9. PubMed ID: 2195189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.