These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 15598351)

  • 21. Progress of structural genomics initiatives: an analysis of solved target structures.
    Todd AE; Marsden RL; Thornton JM; Orengo CA
    J Mol Biol; 2005 May; 348(5):1235-60. PubMed ID: 15854658
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamics alignment: comparison of protein dynamics in the SCOP database.
    Tobi D
    Proteins; 2012 Apr; 80(4):1167-76. PubMed ID: 22275069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ECOD: an evolutionary classification of protein domains.
    Cheng H; Schaeffer RD; Liao Y; Kinch LN; Pei J; Shi S; Kim BH; Grishin NV
    PLoS Comput Biol; 2014 Dec; 10(12):e1003926. PubMed ID: 25474468
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Data growth and its impact on the SCOP database: new developments.
    Andreeva A; Howorth D; Chandonia JM; Brenner SE; Hubbard TJ; Chothia C; Murzin AG
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D419-25. PubMed ID: 18000004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The ConSurf-HSSP database: the mapping of evolutionary conservation among homologs onto PDB structures.
    Glaser F; Rosenberg Y; Kessel A; Pupko T; Ben-Tal N
    Proteins; 2005 Feb; 58(3):610-7. PubMed ID: 15614759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SCOP database in 2004: refinements integrate structure and sequence family data.
    Andreeva A; Howorth D; Brenner SE; Hubbard TJ; Chothia C; Murzin AG
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D226-9. PubMed ID: 14681400
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SCOP: a structural classification of proteins database.
    Hubbard TJ; Murzin AG; Brenner SE; Chothia C
    Nucleic Acids Res; 1997 Jan; 25(1):236-9. PubMed ID: 9016544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction interfaces of protein domains are not topologically equivalent across families within superfamilies: Implications for metabolic and signaling pathways.
    Rekha N; Machado SM; Narayanan C; Krupa A; Srinivasan N
    Proteins; 2005 Feb; 58(2):339-53. PubMed ID: 15562516
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of disulphide bond connectivity patterns in protein tertiary structure.
    Jai Kartik V; Lavanya T; Guruprasad K
    Int J Biol Macromol; 2006 May; 38(3-5):174-9. PubMed ID: 16580722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Finding evolutionary relations beyond superfamilies: fold-based superfamilies.
    Matsuda K; Nishioka T; Kinoshita K; Kawabata T; Go N
    Protein Sci; 2003 Oct; 12(10):2239-51. PubMed ID: 14500881
    [TBL] [Abstract][Full Text] [Related]  

  • 31. De-DUFing the DUFs: Deciphering distant evolutionary relationships of Domains of Unknown Function using sensitive homology detection methods.
    Mudgal R; Sandhya S; Chandra N; Srinivasan N
    Biol Direct; 2015 Jul; 10():38. PubMed ID: 26228684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast model-based protein homology detection without alignment.
    Hochreiter S; Heusel M; Obermayer K
    Bioinformatics; 2007 Jul; 23(14):1728-36. PubMed ID: 17488755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detecting remotely related proteins by their interactions and sequence similarity.
    Espadaler J; Aragüés R; Eswar N; Marti-Renom MA; Querol E; Avilés FX; Sali A; Oliva B
    Proc Natl Acad Sci U S A; 2005 May; 102(20):7151-6. PubMed ID: 15883372
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The SCOP database in 2020: expanded classification of representative family and superfamily domains of known protein structures.
    Andreeva A; Kulesha E; Gough J; Murzin AG
    Nucleic Acids Res; 2020 Jan; 48(D1):D376-D382. PubMed ID: 31724711
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Searching protein 3-D structures for optimal structure alignment using intelligent algorithms and data structures.
    Novosád T; Snášel V; Abraham A; Yang JY
    IEEE Trans Inf Technol Biomed; 2010 Nov; 14(6):1378-86. PubMed ID: 20876026
    [TBL] [Abstract][Full Text] [Related]  

  • 36. EvDTree: structure-dependent substitution profiles based on decision tree classification of 3D environments.
    Gelly JC; Chiche L; Gracy J
    BMC Bioinformatics; 2005 Jan; 6():4. PubMed ID: 15638949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A strategy for large-scale comparison of evolutionary- and reaction-based classifications of enzyme function.
    Holliday GL; Brown SD; Mischel D; Polacco BJ; Babbitt PC
    Database (Oxford); 2020 Jan; 2020():. PubMed ID: 32449511
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The SUPERFAMILY database in 2007: families and functions.
    Wilson D; Madera M; Vogel C; Chothia C; Gough J
    Nucleic Acids Res; 2007 Jan; 35(Database issue):D308-13. PubMed ID: 17098927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Benchmarking PSI-BLAST in genome annotation.
    Müller A; MacCallum RM; Sternberg MJ
    J Mol Biol; 1999 Nov; 293(5):1257-71. PubMed ID: 10547299
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identifying remote protein homologs by network propagation.
    Noble WS; Kuang R; Leslie C; Weston J
    FEBS J; 2005 Oct; 272(20):5119-28. PubMed ID: 16218946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.