BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 15598511)

  • 1. Heme oxygenase, steering dioxygen activation toward heme hydroxylation.
    Rivera M; Zeng Y
    J Inorg Biochem; 2005 Jan; 99(1):337-54. PubMed ID: 15598511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heme oxygenase reveals its strategy for catalyzing three successive oxygenation reactions.
    Matsui T; Unno M; Ikeda-Saito M
    Acc Chem Res; 2010 Feb; 43(2):240-7. PubMed ID: 19827796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of rat heme oxygenase-1 in complex with heme bound to azide. Implication for regiospecific hydroxylation of heme at the alpha-meso carbon.
    Sugishima M; Sakamoto H; Higashimoto Y; Omata Y; Hayashi S; Noguchi M; Fukuyama K
    J Biol Chem; 2002 Nov; 277(47):45086-90. PubMed ID: 12235152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porphyrin traps its terminator! Concerted and stepwise porphyrin degradation mechanisms induced by heme-oxygenase and cytochrome p450.
    Sharma PK; Kevorkiants R; de Visser SP; Kumar D; Shaik S
    Angew Chem Int Ed Engl; 2004 Feb; 43(9):1129-32. PubMed ID: 14983454
    [No Abstract]   [Full Text] [Related]  

  • 5. Model studies for heme oxygenase-catalyzed porphyrin meso hydroxylation.
    Zhu Y; Silverman RB
    Org Lett; 2007 Mar; 9(7):1195-8. PubMed ID: 17343390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hydrogen-bonding network in heme oxygenase also functions as a modulator of enzyme dynamics: chaotic motions upon disrupting the H-bond network in heme oxygenase from Pseudomonas aeruginosa.
    Rodríguez JC; Zeng Y; Wilks A; Rivera M
    J Am Chem Soc; 2007 Sep; 129(38):11730-42. PubMed ID: 17764179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heme oxygenase: evolution, structure, and mechanism.
    Wilks A
    Antioxid Redox Signal; 2002 Aug; 4(4):603-14. PubMed ID: 12230872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heme oxygenation and the widening paradigm of heme degradation.
    Wilks A; Heinzl G
    Arch Biochem Biophys; 2014 Feb; 544():87-95. PubMed ID: 24161941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of heme degradation by heme oxygenase.
    Yoshida T; Migita CT
    J Inorg Biochem; 2000 Nov; 82(1-4):33-41. PubMed ID: 11132636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the Mechanisms of Heme Hydroxylation by Heme Oxygenases-1 and -2: Kinetic and Cryoreduction Studies.
    Davydov R; Fleischhacker AS; Bagai I; Hoffman BM; Ragsdale SW
    Biochemistry; 2016 Jan; 55(1):62-8. PubMed ID: 26652036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heme oxygenase (HO-1). Evidence for electrophilic oxygen addition to the porphyrin ring in the formation of alpha-meso-hydroxyheme.
    Wilks A; Torpey J; Ortiz de Montellano PR
    J Biol Chem; 1994 Nov; 269(47):29553-6. PubMed ID: 7961940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The hydroxide complex of Pseudomonas aeruginosa heme oxygenase as a model of the low-spin iron(III) hydroperoxide intermediate in heme catabolism: 13C NMR spectroscopic studies suggest the active participation of the heme in macrocycle hydroxylation.
    Caignan GA; Deshmukh R; Zeng Y; Wilks A; Bunce RA; Rivera M
    J Am Chem Soc; 2003 Oct; 125(39):11842-52. PubMed ID: 14505406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dioxygen activation for the self-degradation of heme: reaction mechanism and regulation of heme oxygenase.
    Matsui T; Iwasaki M; Sugiyama R; Unno M; Ikeda-Saito M
    Inorg Chem; 2010 Apr; 49(8):3602-9. PubMed ID: 20380462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallographic studies of heme oxygenase complexed with an unstable reaction intermediate, verdoheme.
    Unno M; Matsui T; Ikeda-Saito M
    J Inorg Biochem; 2012 Aug; 113():102-9. PubMed ID: 22673156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of ferrous and CO-, CN(-)-, and NO-bound forms of rat heme oxygenase-1 (HO-1) in complex with heme: structural implications for discrimination between CO and O2 in HO-1.
    Sugishima M; Sakamoto H; Noguchi M; Fukuyama K
    Biochemistry; 2003 Aug; 42(33):9898-905. PubMed ID: 12924938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial heme oxygenases.
    Frankenberg-Dinkel N
    Antioxid Redox Signal; 2004 Oct; 6(5):825-34. PubMed ID: 15345142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heme utilization by pathogenic bacteria: not all pathways lead to biliverdin.
    Wilks A; Ikeda-Saito M
    Acc Chem Res; 2014 Aug; 47(8):2291-8. PubMed ID: 24873177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct reaction pathways followed upon reduction of oxy-heme oxygenase and oxy-myoglobin as characterized by Mössbauer spectroscopy.
    Garcia-Serres R; Davydov RM; Matsui T; Ikeda-Saito M; Hoffman BM; Huynh BH
    J Am Chem Soc; 2007 Feb; 129(5):1402-12. PubMed ID: 17263425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel mechanism of heme degradation to biliverdin studied by QM/MM and QM calculations.
    Alavi FS; Gheidi M; Zahedi M; Safari N; Ryde U
    Dalton Trans; 2018 Jun; 47(25):8283-8291. PubMed ID: 29892759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism of heme oxygenase.
    Montellano PR
    Curr Opin Chem Biol; 2000 Apr; 4(2):221-7. PubMed ID: 10742194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.