These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 15598527)

  • 1. Quinate oxidation in Gluconobacter oxydans IFO3244: purification and characterization of quinoprotein quinate dehydrogenase.
    Vangnai AS; Toyama H; De-Eknamkul W; Yoshihara N; Adachi O; Matsushita K
    FEMS Microbiol Lett; 2004 Dec; 241(2):157-62. PubMed ID: 15598527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of membrane-bound quinoprotein quinate dehydrogenase.
    Adachi O; Yoshihara N; Tanasupawat S; Toyama H; Matsushita K
    Biosci Biotechnol Biochem; 2003 Oct; 67(10):2115-23. PubMed ID: 14586098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular characterization and heterologous expression of quinate dehydrogenase gene from Gluconobacter oxydans IFO3244.
    Vangnai AS; Promden W; De-Eknamkul W; Matsushita K; Toyama H
    Biochemistry (Mosc); 2010 Apr; 75(4):452-9. PubMed ID: 20618134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved heterologous expression of the membrane-bound quinoprotein quinate dehydrogenase from Gluconobacter oxydans.
    Yakushi T; Komatsu K; Matsutani M; Kataoka N; Vangnai AS; Toyama H; Adachi O; Matsushita K
    Protein Expr Purif; 2018 May; 145():100-107. PubMed ID: 29366965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial NAD(P)-independent quinate dehydrogenase is a quinoprotein.
    van Kleef MA; Duine JA
    Arch Microbiol; 1988 May; 150(1):32-6. PubMed ID: 3044290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New developments in oxidative fermentation.
    Adachi O; Moonmangmee D; Toyama H; Yamada M; Shinagawa E; Matsushita K
    Appl Microbiol Biotechnol; 2003 Feb; 60(6):643-53. PubMed ID: 12664142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose oxidation and PQQ-dependent dehydrogenases in Gluconobacter oxydans.
    Hölscher T; Schleyer U; Merfort M; Bringer-Meyer S; Görisch H; Sahm H
    J Mol Microbiol Biotechnol; 2009; 16(1-2):6-13. PubMed ID: 18957858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of quinate to 3-dehydroshikimate by Ca-alginate-immobilized membrane of Gluconobacter oxydans IFO 3244 and subsequent asymmetric reduction of 3-dehydroshikimate to shikimate by immobilized cytoplasmic NADP-shikimate dehydrogenase.
    Adachi O; Ano Y; Shinagawa E; Yakushi T; Matsushita K
    Biosci Biotechnol Biochem; 2010; 74(12):2438-44. PubMed ID: 21150112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High shikimate production from quinate with two enzymatic systems of acetic acid bacteria.
    Adachi O; Ano Y; Toyama H; Matsushita K
    Biosci Biotechnol Biochem; 2006 Oct; 70(10):2579-82. PubMed ID: 17031026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of membrane-bound quinoprotein inositol dehydrogenase in Gluconobacter oxydans ATCC 621H.
    Hölscher T; Weinert-Sepalage D; Görisch H
    Microbiology (Reading); 2007 Feb; 153(Pt 2):499-506. PubMed ID: 17259621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pyrroloquinoline quinine-dependent membrane-bound d-sorbitol dehydrogenase from Gluconobacter oxydans exhibits an ordered Bi Bi reaction mechanism.
    Yang XP; Wei LJ; Ye JB; Yin B; Wei DZ
    Arch Biochem Biophys; 2008 Sep; 477(2):206-10. PubMed ID: 18407824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New quinoproteins in oxidative fermentation.
    Adachi O; Moonmangmee D; Shinagawa E; Toyama H; Yamada M; Matsushita K
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):10-7. PubMed ID: 12686101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane-bound pyrroloquinoline quinone-dependent dehydrogenase in Gluconobacter oxydans M5, responsible for production of 6-(2-hydroxyethyl) amino-6-deoxy-L-sorbose.
    Yang XP; Wei LJ; Lin JP; Yin B; Wei DZ
    Appl Environ Microbiol; 2008 Aug; 74(16):5250-3. PubMed ID: 18502922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and properties of NADP-dependent shikimate dehydrogenase from Gluconobacter oxydans IFO 3244 and its application to enzymatic shikimate production.
    Adachi O; Ano Y; Toyama H; Matsushita K
    Biosci Biotechnol Biochem; 2006 Nov; 70(11):2786-9. PubMed ID: 17090918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of a recombinant NADP-dependent glycerol dehydrogenase from Gluconobacter oxydans and its application in the production of L-glyceraldehyde.
    Richter N; Neumann M; Liese A; Wohlgemuth R; Eggert T; Hummel W
    Chembiochem; 2009 Jul; 10(11):1888-96. PubMed ID: 19579248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3-dehydroquinate production by oxidative fermentation and further conversion of 3-dehydroquinate to the intermediates in the shikimate pathway.
    Adachi O; Tanasupawat S; Yoshihara N; Toyama H; Matsushita K
    Biosci Biotechnol Biochem; 2003 Oct; 67(10):2124-31. PubMed ID: 14586099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quinohemoprotein alcohol dehydrogenases: structure, function, and physiology.
    Toyama H; Mathews FS; Adachi O; Matsushita K
    Arch Biochem Biophys; 2004 Aug; 428(1):10-21. PubMed ID: 15234265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans.
    Meyer M; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3457-66. PubMed ID: 22790543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of a type II 3-dehydroquinate dehydratase enhances the biotransformation of quinate to 3-dehydroshikimate in Gluconobacter oxydans.
    Nishikura-Imamura S; Matsutani M; Insomphun C; Vangnai AS; Toyama H; Yakushi T; Abe T; Adachi O; Matsushita K
    Appl Microbiol Biotechnol; 2014 Apr; 98(7):2955-63. PubMed ID: 24352733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme-substrate complexes of the quinate/shikimate dehydrogenase from Corynebacterium glutamicum enable new insights in substrate and cofactor binding, specificity, and discrimination.
    Höppner A; Schomburg D; Niefind K
    Biol Chem; 2013 Nov; 394(11):1505-16. PubMed ID: 23929881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.