BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 15598738)

  • 1. Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants.
    Cho Y; Mower JP; Qiu YL; Palmer JD
    Proc Natl Acad Sci U S A; 2004 Dec; 101(51):17741-6. PubMed ID: 15598738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple major increases and decreases in mitochondrial substitution rates in the plant family Geraniaceae.
    Parkinson CL; Mower JP; Qiu YL; Shirk AJ; Song K; Young ND; DePamphilis CW; Palmer JD
    BMC Evol Biol; 2005 Dec; 5():73. PubMed ID: 16368004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are Synonymous Substitutions in Flowering Plant Mitochondria Neutral?
    Wynn EL; Christensen AC
    J Mol Evol; 2015 Oct; 81(3-4):131-5. PubMed ID: 26458992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants.
    Drouin G; Daoud H; Xia J
    Mol Phylogenet Evol; 2008 Dec; 49(3):827-31. PubMed ID: 18838124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant genetics: gene transfer from parasitic to host plants.
    Mower JP; Stefanović S; Young GJ; Palmer JD
    Nature; 2004 Nov; 432(7014):165-6. PubMed ID: 15538356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Roles of Mutation, Selection, and Expression in Determining Relative Rates of Evolution in Mitochondrial versus Nuclear Genomes.
    Havird JC; Sloan DB
    Mol Biol Evol; 2016 Dec; 33(12):3042-3053. PubMed ID: 27563053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrasting rates of mitochondrial molecular evolution in parasitic Diptera and Hymenoptera.
    Castro LR; Austin AD; Dowton M
    Mol Biol Evol; 2002 Jul; 19(7):1100-13. PubMed ID: 12082129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants.
    Mower JP; Touzet P; Gummow JS; Delph LF; Palmer JD
    BMC Evol Biol; 2007 Aug; 7():135. PubMed ID: 17688696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates.
    Sloan DB; Alverson AJ; Chuckalovcak JP; Wu M; McCauley DE; Palmer JD; Taylor DR
    PLoS Biol; 2012 Jan; 10(1):e1001241. PubMed ID: 22272183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel rate heterogeneity in chloroplast and mitochondrial genomes of Brazil nut trees (Lecythidaceae) is consistent with lineage effects.
    Soria-Hernanz DF; Braverman JM; Hamilton MB
    Mol Biol Evol; 2008 Jul; 25(7):1282-96. PubMed ID: 18385219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs.
    Wolfe KH; Li WH; Sharp PM
    Proc Natl Acad Sci U S A; 1987 Dec; 84(24):9054-8. PubMed ID: 3480529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear-mitochondrial sequences as witnesses of past interbreeding and population diversity in the jumping bristletail Mesomachilis.
    Baldo L; de Queiroz A; Hedin M; Hayashi CY; Gatesy J
    Mol Biol Evol; 2011 Jan; 28(1):195-210. PubMed ID: 20667982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation.
    Hellberg ME
    BMC Evol Biol; 2006 Mar; 6():24. PubMed ID: 16542456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic perspectives on diversification, biogeography, and floral evolution of Collinsia and Tonella (Plantaginaceae).
    Baldwin BG; Kalisz S; Armbruster WS
    Am J Bot; 2011 Apr; 98(4):731-53. PubMed ID: 21613170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete mitochondrial genome sequence of three Tetrahymena species reveals mutation hot spots and accelerated nonsynonymous substitutions in Ymf genes.
    Moradian MM; Beglaryan D; Skozylas JM; Kerikorian V
    PLoS One; 2007 Jul; 2(7):e650. PubMed ID: 17653277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes.
    Mower JP; Stefanović S; Hao W; Gummow JS; Jain K; Ahmed D; Palmer JD
    BMC Biol; 2010 Dec; 8():150. PubMed ID: 21176201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substitution of the gene for chloroplast RPS16 was assisted by generation of a dual targeting signal.
    Ueda M; Nishikawa T; Fujimoto M; Takanashi H; Arimura S; Tsutsumi N; Kadowaki K
    Mol Biol Evol; 2008 Aug; 25(8):1566-75. PubMed ID: 18453549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rates of nucleotide substitution in Cornaceae (Cornales)-Pattern of variation and underlying causal factors.
    Xiang QY; Thorne JL; Seo TK; Zhang W; Thomas DT; Ricklefs RE
    Mol Phylogenet Evol; 2008 Oct; 49(1):327-42. PubMed ID: 18682295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial covariation of mutation and nonsynonymous substitution rates in vertebrate mitochondrial genomes.
    Broughton RE; Reneau PC
    Mol Biol Evol; 2006 Aug; 23(8):1516-24. PubMed ID: 16705079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole-gene positive selection, elevated synonymous substitution rates, duplication, and indel evolution of the chloroplast clpP1 gene.
    Erixon P; Oxelman B
    PLoS One; 2008 Jan; 3(1):e1386. PubMed ID: 18167545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.