BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 15598881)

  • 1. Regulation of the osmoregulatory HOG MAPK cascade in yeast.
    Saito H; Tatebayashi K
    J Biochem; 2004 Sep; 136(3):267-72. PubMed ID: 15598881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two activating phosphorylation sites of Pbs2 MAP2K in the yeast HOG pathway are differentially dephosphorylated by four PP2C phosphatases Ptc1-Ptc4.
    Tatebayashi K; Saito H
    J Biol Chem; 2023 Apr; 299(4):104569. PubMed ID: 36870684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway.
    Tatebayashi K; Takekawa M; Saito H
    EMBO J; 2003 Jul; 22(14):3624-34. PubMed ID: 12853477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress.
    Winkler A; Arkind C; Mattison CP; Burkholder A; Knoche K; Ota I
    Eukaryot Cell; 2002 Apr; 1(2):163-73. PubMed ID: 12455951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1.
    Warmka J; Hanneman J; Lee J; Amin D; Ota I
    Mol Cell Biol; 2001 Jan; 21(1):51-60. PubMed ID: 11113180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two protein-tyrosine phosphatases inactivate the osmotic stress response pathway in yeast by targeting the mitogen-activated protein kinase, Hog1.
    Jacoby T; Flanagan H; Faykin A; Seto AG; Mattison C; Ota I
    J Biol Chem; 1997 Jul; 272(28):17749-55. PubMed ID: 9211927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway.
    Tatebayashi K; Yamamoto K; Tanaka K; Tomida T; Maruoka T; Kasukawa E; Saito H
    EMBO J; 2006 Jul; 25(13):3033-44. PubMed ID: 16778768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases.
    Wurgler-Murphy SM; Maeda T; Witten EA; Saito H
    Mol Cell Biol; 1997 Mar; 17(3):1289-97. PubMed ID: 9032256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nbp2 targets the Ptc1-type 2C Ser/Thr phosphatase to the HOG MAPK pathway.
    Mapes J; Ota IM
    EMBO J; 2004 Jan; 23(2):302-11. PubMed ID: 14685261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting of PP2C in budding yeast.
    Ota IM; Mapes J
    Methods Mol Biol; 2007; 365():309-22. PubMed ID: 17200571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential regulation of the cell wall integrity mitogen-activated protein kinase pathway in budding yeast by the protein tyrosine phosphatases Ptp2 and Ptp3.
    Mattison CP; Spencer SS; Kresge KA; Lee J; Ota IM
    Mol Cell Biol; 1999 Nov; 19(11):7651-60. PubMed ID: 10523653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction between the transmembrane domains of Sho1 and Opy2 enhances the signaling efficiency of the Hog1 MAP kinase cascade in Saccharomyces cerevisiae.
    Takayama T; Yamamoto K; Saito H; Tatebayashi K
    PLoS One; 2019; 14(1):e0211380. PubMed ID: 30682143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeast osmoregulation.
    Hohmann S; Krantz M; Nordlander B
    Methods Enzymol; 2007; 428():29-45. PubMed ID: 17875410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two protein tyrosine phosphatases, Ptp2 and Ptp3, modulate the subcellular localization of the Hog1 MAP kinase in yeast.
    Mattison CP; Ota IM
    Genes Dev; 2000 May; 14(10):1229-35. PubMed ID: 10817757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A specific protein-protein interaction accounts for the in vivo substrate selectivity of Ptp3 towards the Fus3 MAP kinase.
    Zhan XL; Guan KL
    Genes Dev; 1999 Nov; 13(21):2811-27. PubMed ID: 10557209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae.
    Rep M; Albertyn J; Thevelein JM; Prior BA; Hohmann S
    Microbiology (Reading); 1999 Mar; 145 ( Pt 3)():715-727. PubMed ID: 10217506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Ptc2 type 2C Ser/Thr phosphatase in yeast high-osmolarity glycerol pathway inactivation.
    Young C; Mapes J; Hanneman J; Al-Zarban S; Ota I
    Eukaryot Cell; 2002 Dec; 1(6):1032-40. PubMed ID: 12477803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase.
    Hahn JS; Thiele DJ
    J Biol Chem; 2002 Jun; 277(24):21278-84. PubMed ID: 11923319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential regulation of FUS3 MAP kinase by tyrosine-specific phosphatases PTP2/PTP3 and dual-specificity phosphatase MSG5 in Saccharomyces cerevisiae.
    Zhan XL; Deschenes RJ; Guan KL
    Genes Dev; 1997 Jul; 11(13):1690-702. PubMed ID: 9224718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae.
    O'Rourke SM; Herskowitz I
    Genes Dev; 1998 Sep; 12(18):2874-86. PubMed ID: 9744864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.