These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 15599082)

  • 1. Virtual reality environment design of managing both presence and virtual reality sickness.
    Tanaka N; Takagi H
    J Physiol Anthropol Appl Human Sci; 2004 Nov; 23(6):313-7. PubMed ID: 15599082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment.
    Kim HK; Park J; Choi Y; Choe M
    Appl Ergon; 2018 May; 69():66-73. PubMed ID: 29477332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of bone-conducted vibration on simulator sickness in virtual reality.
    Weech S; Moon J; Troje NF
    PLoS One; 2018; 13(3):e0194137. PubMed ID: 29590147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Immersive Virtual Reality Headset Viewing on Young Children: Visuomotor Function, Postural Stability, and Motion Sickness.
    Tychsen L; Foeller P
    Am J Ophthalmol; 2020 Jan; 209():151-159. PubMed ID: 31377280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Psychometric evaluation of Simulator Sickness Questionnaire and its variants as a measure of cybersickness in consumer virtual environments.
    Sevinc V; Berkman MI
    Appl Ergon; 2020 Jan; 82():102958. PubMed ID: 31563798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motion sickness and sense of presence in a virtual reality environment developed for manual wheelchair users, with three different approaches.
    Salimi Z; Ferguson-Pell MW
    PLoS One; 2021; 16(8):e0255898. PubMed ID: 34411151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demand characteristics in assessing motion sickness in a virtual environment: or does taking a motion sickness questionnaire make you sick?
    Young SD; Adelstein BD; Ellis SR
    IEEE Trans Vis Comput Graph; 2007; 13(3):422-8. PubMed ID: 17356210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of virtual reality technology locomotive multi-sensory motion stimuli on a user simulator sickness and controller intuitiveness during a navigation task.
    Aldaba CN; Moussavi Z
    Med Biol Eng Comput; 2020 Jan; 58(1):143-154. PubMed ID: 31758315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of three-dimensional motion sickness using a virtual reality simulator for robot-assisted surgery in undergraduate medical students: A prospective observational study.
    Takata R; Kanehira M; Kato Y; Matsuura T; Kato R; Maekawa S; Obara W
    BMC Med Educ; 2021 Sep; 21(1):498. PubMed ID: 34548032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Deep Motion Sickness Predictor Induced by Visual Stimuli in Virtual Reality.
    Kim J; Oh H; Kim W; Choi S; Son W; Lee S
    IEEE Trans Neural Netw Learn Syst; 2022 Feb; 33(2):554-566. PubMed ID: 33079678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters.
    Borrego A; Latorre J; Llorens R; Alcañiz M; Noé E
    J Neuroeng Rehabil; 2016 Aug; 13(1):68. PubMed ID: 27503112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Approach for Reducing Virtual Reality Sickness in Real Time: Design and Validation Study.
    Won J; Kim YS
    JMIR Serious Games; 2022 Sep; 10(3):e36397. PubMed ID: 36166294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis on Mitigation of Visually Induced Motion Sickness by Applying Dynamical Blurring on a User's Retina.
    Nie GY; Duh HB; Liu Y; Wang Y
    IEEE Trans Vis Comput Graph; 2020 Aug; 26(8):2535-2545. PubMed ID: 30668475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual and augmented reality in a simulated naval engagement: Preliminary comparisons of simulator sickness and human performance.
    Pettijohn KA; Peltier C; Lukos JR; Norris JN; Biggs AT
    Appl Ergon; 2020 Nov; 89():103200. PubMed ID: 32658772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of using virtual reality in geriatric psychiatry.
    Just SA; Lütt A; Siegle P; Döring-Brandl EJ
    Int J Geriatr Psychiatry; 2024 Jan; 39(1):e6060. PubMed ID: 38241061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Visual Guides to Reduce Virtual Reality Sickness in First-Person Shooter Games: Correlation Analysis.
    Seok KH; Kim Y; Son W; Kim YS
    JMIR Serious Games; 2021 Jul; 9(3):e18020. PubMed ID: 34264196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined pitch and roll and cybersickness in a virtual environment.
    Bonato F; Bubka A; Palmisano S
    Aviat Space Environ Med; 2009 Nov; 80(11):941-5. PubMed ID: 19911517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel neurodigital interface reduces motion sickness in virtual reality.
    Dopsaj M; Tan W; Perovic V; Stajic Z; Milosavljevic N; Paessler S; Makishima T
    Neurosci Lett; 2024 Mar; 825():137692. PubMed ID: 38382798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Test-retest reliability of the virtual reality sickness evaluation using electroencephalography (EEG).
    Lim HK; Ji K; Woo YS; Han DU; Lee DH; Nam SG; Jang KM
    Neurosci Lett; 2021 Jan; 743():135589. PubMed ID: 33359731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential factors contributing to observed sex differences in virtual-reality-induced sickness.
    Bannigan GM; de Sousa AA; Scheller M; Finnegan DJ; Proulx MJ
    Exp Brain Res; 2024 Feb; 242(2):463-475. PubMed ID: 38170233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.